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Introduction

In this part of natural language processing, we study
speechfrom a computational perspective.

We will touch upon the following subjects
phonetics
speech recognition
computational phonology
speech synthesis
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Phonetics

“Phonetics is the study of linguistic sounds, how they
are produced by the articulators of human vocal tract,
how they are realized acoustically, and how this
acoustic realization can be digitized and processed.”

Phonetics includes the following studies
phonetic alphabets
articulatory phonetics
acoustic phonetics
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Phonetic Alphabet

A spoken word can be decomposed into a string of
“basic” units of speech.

A set consisting of such basic units is called a phonetic
alphabet.

An element in a phonetic alphabet is called a phone.

Using a symbol for each distinct phone, a spoken word
can be transcribed as a string of such symbols.

An utterance is a string of spoken words. It can be
transcribed by an phonetic alphabet.
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Common Phonetic Alphabets

The international phonetic alphabet(IPA): originally
developed by International Phonetic Association in
1888, with the goal of transcribing the speech of all
human languages!

ARPAbet: a phonetic alphabet designed for American
English only. It uses ASCII symbols for phones.

Examples are given in Figure 7.1.
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Opaque vs. Transparent

A word is represented by a string of letters. It is called
the orthography of the word.

A spoken word is represented by a string of phones. It
is called the pronunciation of the word.

The mapping between a letter and a phone may be
transparent or opaque, depending on the languages.
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Articulatory Phonetics

Articulatory phonetics is the study of how the sound for
each phone in the phonetic alphabet is produced, as
the motion of organs in the vocal tract, including

lung
trachea (windpipe)
larynx (Adam’s apple)
vocal folds (vocal cords)
glottis (space between folds)
mouth (tongue, teeth, lips, palate, velum)
nose

Figure 7.3.
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Consonants: Place of Articulation

Airflow is restricted during the production of phones.

Where this restriction takes place is called the place of
articulation . Shown in Figure 7.4.

For consonants, we have the following attributes for the
place of articulation

labial: [p][b]
labiodental: [f][v]
dental: [θ]

alveolar: [t][d][s][z]
palatal: [

∫

]

velar: [k][g]
glottal
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Consonants: Manner of Articulation

How the airflow is restricted during the production of a
phone is called the manner of articulation .

For consonants, we have the following attributes for the
manner of articulation

stop (plosive): airflow completely blocked,
[t][d][p][b][k][g]

fricative : airflow restricted but not completely
blockes, [s][z]
affricate: stop + fricative, [t

∫

]

tap (flap): quick motion of tongue against alveolar
ridge, lotus, kitten
nasal: airflow passing through nasal tract, [m][n]
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Vowels

Vowels can also be characterized by the position and
motion of articulators.

Commonly used parameters are
height
frontness (backness)
rounded

According to these parameters, we have
front vowels [iy],[ey], back vowels [uw]
high vowels [iy], [uw], low vowels [a]

rounded vowels, [u].

“vowel space”, Figure 7.6
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Syllables

A syllable must contain a central vowel, and optinal
surrounding consonants.

Specifically, a syllable consists of
nucleus: the central vowel (mandatory)
onset: a sequence of consonants in front of the
nucleus (optional)
coda: a sequence of consonants following the
nucleus (optional)

The rime of a syllable is the nucleus plus coda.
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Accentuation and Lexical Stress

In a natural sentence of English, some words are more
prominent than others, due to their grammatical roles.

They are said to be accented.

This is also known as pitch accent in the sentence level.

When an accented word is multi-syllabic, the syllable
that is accented is said to has the lexical stress.

Lexical stress are often labeled in a pronunciation
dictionary.
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Pronunciation Variation

The production of a phone does vary from one
instance to another.

This is called pronunciation variation .

The context of a phone differs.

For example, a vowel can be accented or reduced
depending on the context. Consonants have similar
behavior.

We will look at local effects induced by neighboring
phones. But note that semantic and syntactical factors
are also important.
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Phonetic Features

The pronunciation variation can be described by
phonetic features.

A phonetic feature corresponds to a property. For a
given feature, a phone has value 1 or 0. E.g.,

voice
labial
nasal
. . .

Equivalently, a feature value can be non-binary.

Part II: Speech – p. 14



Phonological Rules

A phonological rule is denoted by

/A/ −→ B / C D,

where A,B,C,D are phone classes.

It characterizes the relation between a phone class (A)
and its realization (B) for a specific context (C and D).
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Acoustic Phonetics

Physically, speech is a wave of air pressure.

Basic notions of the acoustic waveformof speech
frequency of a waveform
spectrum
sampling of speech waveforms
Nyquist frequency, rate
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Time-domain Quantities

The power P of a segment of N samples is defined by

P =
1

N

N
∑

i=1

|xi|2

The root-mean-squareamplitude is

RMS =
√

P

The intensity is defined by

Intensity = 10 log
10

P

P0
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Spectral Analysis

A signal is often described as a function of time.

It can also be described as a function of frequency.

The transformation from a function of time to a function
of frequency is called spectral analysis.

The spectrum of a signal is a function of frequency. It is
obtained through the Fourier transform , and indicates
the distribution of energy over frequency.
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Basic Terms

fundamental frequency: the frequency of vocal fold
vibrations, also called F0

pitch track (contour) : the plot of F0 over time (Fig.
7.15)

The term pitch refers to a perceptual measure
correlated to the fundamental frequency.

The perceptual measure of loudnessis related to the
signal intensity.
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Spectrogram

A spectrogramshows how the spectrum of a speech
waveform changes over time.

Refer to Fig. 7.23. It is a time-frequency plot.

In order to obtain spectrogram, it is essential to window
the waveform and apply short-time Fourier transform .

Dark points have high amplitudes.
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Source-Filter Model

A dark strip (spectral peak) in a spectrogram is called a
formant .

Formant frequencies can be used to identify vowels.

Imagine a source-filter model where the source is the
pulses by vocal folds and the filter is the vocal tract.

The formants are the resonant frequencies.

Different vocal-tract configurations of different vowels
lead to different formant frequencies.
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Computational Resources

Pronunciation dictionaries
CELEX, CMUdict, PRONLEX
CMUdict: 125k wordforms, ARPAbet, stress
marked for vowels

Phonetically annotated corpus
TIMIT, Switchboard
TIMIT: 6300 utterances from 2300+ sentences by
630 speakers, time-aligned transcription (at the
phone-level)

Phonetic software tools
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Automatic Speech Recognition

“The task of speech recognition is to take as input an
acoustic waveform and produce as output a string of
words.”

Noisy-channel model
The acoustic waveform representation (channel
output) is a noisy version of a string of words
(channel input).

HMM model (of generation)
The model from a string of words to its acoustic
waveform representation is a random process
described by hidden Markov models.

Part II: Speech – p. 23



Decoding Problem

From waveform representation to word string is also
called decoding.

The acoustic input is often processed to be a
sequence of “observations”, say

O = o1, . . . , ot.

The decoding problem can be written as

Ŵ = arg max
W

P (W |O) = arg max
W

P (W,O)

= arg max
W

P (O|W )P (W )

O is often not the waveform samples, but features.
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Feature Extraction

sampling

pre-emphasis

windowing

discrete Fourier transform

Mel-frequency filter bank

taking logarithm

cepstrum

dynamic features

log energy
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Sampling

We sample from speech waveform with period T

x[n] = xc(nT ), n = 1, 2, . . . , T.

If the sampling period T is sufficiently short, then x[n]
is a fair representation of xc(t).

In fact, if xc(t) is bandlimited, x[n] is exact, meaning it
contains all information about xc(t).
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Pre-Emphasis

There is more energy at the low-frequency range than
at the high-frequency range in voiced segments, such
as vowels.

Pre-emphasisboosts the high-frequency energy.

This is often done by a filter

y[n] = x[n] − αx[n − 1], 0.9 < α < 1.
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Windowing

Use a window function to extract a segment of x[n] for
processing, then moves the window forward.

A simple window function is the rectangular window

w[n] = rectL[n] =







1, 0 ≤ n ≤ L − 1

0, otherwise.

A window whose coverage starts at sample m is

wm[n] = w[n − m].

Clearly it is non-zero only for m ≤ n ≤ m + L − 1.
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Hamming Window

Instead of the simple rectangular window, the
Hamming window is often used as the window function

w[n] =







0.54 − 0.46 cos
(

2πn
L

)

, 0 ≤ n ≤ L − 1

0, otherwise.

A Hamming window has the same span, but is
smoothier.
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Frame

Each window of signal is called a frame.

In the previous example, a frame has a sizeof L.

The difference of the starting positions of a frame and
the next frame is called frame shift.

Suppose the frame shift is S. The lth frame uses the
window function of

w[n − lS].

Frame size and frame shift need not be equal. Often
the frame shift is smaller to have overlapping frames.
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Discrete Fourier Transform

For each frame, the discrete Fourier transform (DFT) is
applied,

X[k] =

N−1
∑

n=0

x[n]e−j 2πnk
N , 0 ≤ k ≤ N − 1.

DFT produces samples of the Fourier transform of x[n],
equally spaced at points ωk = 2πk

N
.

Note that the Fourier transform of x[n] is related to the
Fourier transform of xc(t).

So X[k] is related to the short-time spectrum of that
window of signal.
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Spectrogram

The DFT of a frame represents the spectral information
of the frame.

Plotting frame-DFT over time, we have a 2-dimensional
(time-frequency) representation of spectral information.
This is called spectrogram.

wide-band spectrogram: a small frame size (≤ 10
ms) has a fine time resolution and coarse
frequency resolution
narrow-band spectrogram: a large frame size (> 20
ms)
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Mel-Frequency Filter Bank

The mel-scaleof a frequency f is defined by

mel(f) = 1127 log(1 +
f

700
).

To decide the mel-frequency filters
decide the number of filters, say M

decide the overlapping ratio
decide the mel-scales of the lowest and highest
frequencies
decide the central frequencies such that

the filters are equally spaced in the mel-scale;
the entire frequency range is covered.
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Binning and Logarithm

Using a mel-scale filter as bin, the DFTs with
frequencies falling within that filter are integrated

B[m] =
∑

k∈Sm

|X[k]|.

The squared magnitudes can also be used.

The sum in each bin is taken logarithm

X̂[m] = log B[m].
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MFCC

The cepstrum of a frame is the inverse discrete Fourier
transform of the logarithm of mel-bin outputs

c[p] =
1

M

M−1
∑

m=0

X̂[m]ej2πmp/M .

liftering

truncation

c[p]’s are called MFCC , the mel-frequency cepstral
coefficients.
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Log Energy

The log energyof the lth frame is simply

ξ[l] = log

(

∑

0≤n≤L−1

x2[lS + n]

)

.
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Dynamic Features

The MFCC or the log energy of a frame is called the
static features.

We can enhance the feature vectors by including the
dynamic features.

The simplest are the delta features, defined by

∆f [n] =
f [n + 1] − f [n − 1]

2
.

Other formulas for delta feature exist.
The delta features of delta features, called the
acceleration features, are often used as well.
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Gaussian Mixture Models

Uni-variate Gaussian

N(x;µ, σ2) : p(x) =
1√
2πσ

e−
(x−µ)2

2σ2

Multi-variate Gaussian

N(x;µ,Σ) : p(x) =
1

(2π)
D
2 |Σ| 12

e−
(x−µ)T Σ−1(x−µ)

2

Gaussian Mixture Model

p(x) =
∑

k

ckN(x;µk,Σk).
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Embedded Training

Training means the learning the parameters by the
recognizer.

Each basic HMM corresponds to a linguistic unit, such
as a phone or a word.

With labeled data to the level of basic HMM units, each
HMM can be trained by the corresponding data.

However, this is often a luxury. What we have is a label
for the entire utterance.

The embedded training is an method in this scenario:
to use higher-level label to train lower-level HMMs.
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Flat Start

Basic ideas of embedded training
assume parameter set
accumulates data statistics based on label
update parameter set

In order to start this iterative process, we need to have
an initial estimate.

The flat start method is used in such initialization.
for initial Gaussian parameters, use global mean
and variance
for initial Markov chain parameters, use uniform
probability for allowed transitions
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Viterbi Training

In an exactembedded training, the complete data
statistics of all possible state sequencesare accumulated
for parameter updates.

In a Viterbi embedded training, the data statistics is
only computed on the Viterbi path , which is the most
probable one.

The Viterbi path actually defines an alignment between
linguistic units and speech segments.

This alignment is called a forced alignementas the
speech is forced to be aligned to a given label.
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Evaluation

word error rate

WER =
I + S + D

N
∗ 100%,

I: the number of insertions
D: the number of deletions
S: the number of substitutions
N : the number of word tokens in the reference

based on an optimal alignment
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Advanced Topics in ASR

N-Best List and Word Lattice

Stack Decoding

Context-Dependent Models

Tree-Strutured Lexicon
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Re-Scoring

An ASR system can be designed to create multiple
hypotheses, instead of just one.

These hypotheses are subject to further mechanism to
decide which is the best. The is called rescoring.

More sophisticated models are used for rescoring
purpose, to pick a better candidate.
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N-Best List and Word Lattice

A list of the top-N candidates is called an N-best list.

An alternative way is to use a word lattice, which
represents a set of word sequences in a directed
graph.

an arc is labeled by a word, along with other useful
information
a node is labeled by a time mark
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Oracle Error Rate

By definition, the oracle error rate of multiple
hypotheses is the error rate when the best hypothesis
is used.

Same definition for an entire test set, where the
best hypothesis is used for each utterance.

When using a word lattice to represent multiple
hypotheses, it is also called lattice error rate .

It represents the lower bound on error rate for any
rescoring mechanism.
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Word Graph

A word graph is a simplified version of a word lattice.
removing the time information
merging overlapped copies
Fig. 10.3, 10.4

vastly restricting the search space
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Confusion Networks

The word posterior probability represents the system’s
confidenceof about a specific word.

It can be computed by a normalized probability based
on competing hypotheses.

A confusion network has a word and the confusable
words in a section of sectioned graph. Fig. 10.5.

nicknamed “sausage”

An arc is labeled by word identity and its posterior
probability.

The word probability normalization is based on
sentence probability.
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Context-Dependent Models

We will use phonemodels for illustration.

The acoustic realization of a phonedoes depend on its
context, that is, the adjacent phones have influence.

Instead of a single model, we can use a different
model for each different phone context.

i → b-i+p, k-i+k, . . .
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State-Tying

The number of models will increase significantly, as
well as the number of states.

State-tying can be then applied to reduce the total
number of states. Fig. 10.13.

Suppose there are three states per triphone HMM.
The first states of the triphone models with the
same middle phone are tied.
Similarly for the other states.
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Stack Decoding

Imagine speech decoding as a graph search problem.

A hypothesis prefixed by p has a score

f(p) = g(p) + h(p),

where g(p) is the best score from root to p, and h(p) is
an estimate for completing the best hypothesis prefixed
by p.

A priority queue , using f(p) as the priority, is used to
store active hypotheses.
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Optimality

In stack decoding, the current best hypothesis in the
stack is extended to generate new hypotheses, which
are then pushed back according to its priority.

If h(p) is an upper bound for the residual score, a
completed hypothesis p∗ at the top of stack is optimal.

That is, no hypothesis in the queue can have a better
score when it is finished

g(p∗) = f(p∗) ≥ f(q) + h(q) ≥ g(q+).

where q is a hypothesis in the queue and q+ is the best
completed hypothesis prefixed by q.
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Tree-Structured Lexicon

The pronunciation lexicon can be arranged in a tree
such that each edge is either an HMM, or NULL

HMM: acoustic unit
NULL: word end (with word ID)

The acoustic model of a word w is the label of a path
from root to the word-end node of w.

efficiency: less node/edges for the entire lexicon
deficiency: word id is not known until a word-end
node is met

During search, each language model staterequires a
lexicon tree copy.
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