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Information Retrieval

Information retrieval, IR , especially on the world-wide
web, is one of the most successful applications in the
digital era

Google
billions of daily searches
super-human

collection (e.g., WWW) = source of information

query = information need

search engine: find the most relevant documents given
user’s query
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Basic Terminology

document: unit of text, indexed

collection: a set of documents

term: a lexical item that occurs in a collection

query: a set of terms used by a user to express his/her
information need

ad hoc retrieval: an unaided user poses a query to a
retrieval system, which returns relevant documents
(often ordered) in a collection
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Vector Space Model

The vector space modelfor IR uses the basic idea of
representing documents and queries as vectors.

What are the components of such a vector?

Suppose there are n distinct terms in a collection. A
document D can be represented by an n-component
vector (each dimension corresponds to a distinct term)

d =
[

d1 . . . dn

]T

.

Similarly for a query Q

q =
[

q1 . . . qn

]T

.
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Term Weight

The component of the dimension of a term is called
term weight.

The weighting schemerefers to how weights are
decided.

The simplest weighting scheme is the term frequency,
i.e., the number of occurrences of a term.

The entire collection is represented by a collection of
vectors, which is called a term-by-document matrix.

A =









↑ . . . ↑

d1 . . . dN

↓ . . . ↓









.

Part V: Applications – p. 5



Distance

If two vectors are similar, they are close in the vector
space.

When deciding where a query vector and a document
vector is close, it is better to normalize the length factor.

Therefore, the cosineis used, i.e.,

sim(q,d) =

∑

i qidi

|q||d|
.

Note only the first quadrant of the vector space is used.
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Document Frequency

The document frequencyni of the term wi is the
number of documents wi occurs.

The inverse document frequency term weightingis
defined by

idfi = log
N

ni

.

The basic idea is that if wi occurs only in a small
number of documents (ni << N ), then each
occurrence is important.

Conversely, if wi appears in many document (ni ∼ N ),
then one occurrence of wi is not much important.
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TF-IDF

The term frequency and the inverse document
frequency can be combined, called the tf-idf weighting
scheme,

wi = tfi ∗ idfi

For the jth document in the collection, Dj, we have

dij = tfij ∗ idfi,

and

A =









d11 . . . d1N

...
. . .

...

dn1 . . . dnN









.
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Term Selection

Some of the words are not useful for retrieval.

We do not need to include them in the set of terms for
the vector space.

A stoplist is a list of high-frequency words that are
excluded.

Some words are morphological variants of the same
lemma.

It is often appropriate to treat them like they are the
same.

Stemming refers to such a process.
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Evaluation of IR

precision

p =
number of relevant documents retrieved

number of documents retrieved
=

|R|

|T |

recall

r =
number of relevant documents retrieved

number of relevant documents in the collection
=

|R|

|U |

When the collection is indefinite, |U | is unknown, and r

cannot be computed.
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Mean Average Precision

Suppose a ranked list of document is returned by an IR
system.

At the kth relevant returned document, we compute the
precision up to and including that document.

Specifically, suppose the kth relevant document is
ranked-Tk,

pk =
k

Tk

.

The mean average precision (MAP)is then defined by

MAP =
1

K

K
∑

k=1

pk.
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Relevance Feedback

There are some methods to improve user query.

The most effective method in the vector space model is
the use of relevance feedback.

The user specifies which documents are relevant to
his/her query.

Suppose R documents are relevant and S are not. We
can form a new query vector by

q′ = q + β

(

1

R

R
∑

i=1

ri

)

− γ

(

1

S

S
∑

k=1

sk

)

.
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Query Expansion

A query can be expandedto include related terms for
better retrieval.

The terms to be added are taken from a thesaurus,
which is essentially a list of highly correlated terms.

A thesaurus can come from an external source.

It can also be automatically created from the
documents in a collection, such as via term clustering

In the term-by-document matrix, each row
corresponds to a term.
Row vectors can be clustered. Each cluster is a set
of correlated words.
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Homonymy

Homonymy is a relation that holds between words with
the same forms but unrelated meanings.

financial bank1 vs. east bank2

Words of the same pronunciation but different spellings
are not considered homonyms (be, bee). They are
called homophones.

Words of the same spelling but different pronunciations
are not considered homonyms (CONtent, conTENT).
They are called homographs.

Homonymy reduces precision of IR.
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Polysemy

Polysemy: multiple related meanings with a single
lexeme.

Consider blood bank, is this bank the same as bank1?

Polysemy refers to the related but different senses of a
word, while homonymy refers to obviously different
meanings.

The difference between homonymy and polysemy can
be difficult to tell.

Polysemy also reduces IR precision.
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Synonymy

Different words with the same meaning are called
synonyms.

Whether two words have the same meaning can be
tested by substitutability .

It is hardly possible for two words to be
interchangeable in all contexts.

Synonymy reduces recall rate of IR.
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Hyponymy

A kind of relation between words is that one word is a
subclass of the other.

The more specific class is called a hyponym, and the
more general class is called a hypernym. For example

car is a hyponym of vehicle

vehicle is a hypernym of car

Hyponymy also reduces recall rate of IR.
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Question Answering

From user’s perspective, a direct answer is often better
than a list of documents.

Question answering (QA)is the task of answering a
user’s question.

If the question is regarding a fact, then it is called
factoid question answering.

Particularly, if the question asked is about a named
entity, such as a person, organization, or location.

Figure 23.7 gives some examples.
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Question Processing

Given a question, this module extracts
a query: for input to a IR system
an answer type: specification of the kind of entity
that would constitute a reasonable answer

Query formulation does the first part.

Question classificationdoes the second part.
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Query Formulation

Simply use the question as query

May need query expansion on a small collection

Rule-based query reformulation

where is A → A is located in

when was laser invented → the laser was invented
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Question Classification

A given question is classified according to the
expected answer type.

A question may expect an answer of type
PERSON
CITY
DEFINITION
BIOGRAPHY
answer type taxonomy (Figure 23.9)

The answer type help to focus the search.

The answer type is an indicator for answer template.
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Passage Retrieval

A document-level retrieval is employed first to return a
list of related documents in a collection.

Next, a set of potential answer passages is extracted
from the list of documents.

The unit of passage is application-dependent
sections, paragraphs, sentences
snippets

First, the answer type helps to filter out irrelevant
passages.

The remaining passages are ranked based on a small
set of features.
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Answer Processing

From the retrieved passages, we want to construct an
answer to the question.

There are two classes of methods
pattern extraction: based on the expected answer
type, the corresponding name entity or regular
expression (pattern) is searched for
n-gram tiling : every unigram, bigram, and trigram
in the snippet is weighted. These n-grams are
forged into larger answers, such as through a
greedy tiling algorithm.
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Evaluation

TREC (Text REtrieval Conference) Q/A track

mean reciprocal rank (MRR)
Correct answers are known for a test question.
A system returns a ranked list of answers.
The score is the reciprocal of the rank of the first
correct answer.

For a test set of N questions,

MRR =

N
∑

i=1

1
ri

N
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Text Summarization

outline of any document

abstract of a scientific article

headlineof a news article

snippet of a webpage

action itemsof a meeting

summary of an email thread

etc.
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Core Problems

content selection

information ordering

sentence realization
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Single Document Summarization

content selection: choose sentences

information ordering: order the sentences

sentence realization: clean up the sentences
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Content Selection

unsupervised approach
Based on the log-likelihood ratio, each word can be
assigned a weight of 0 or 1

The weight of a sentence is the sum of word
weights normalized by sentence length.
Select those sentences with top weights.

supervised approach
a training set of hand-created summary extracts
a classifier based on features (Figure 23.17) can
be trained
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Multi-Document Summarization

The issue of redundancy

Maximal marginal relevance (MRR)
the addition of a sentence s to the summary is
penalized by the relevance of s and the current
summary

coherenceand coreference
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Summarization and QA

Instead of a short phrase to a factoid question, users
are often more interested in summarization which is
more informative.

When documents are summarized to answer a user’s
information need, it is called focused summarization.

QA and summarization systems are combined for this
task.
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Summarization Evaluation

ROUGE: Recall-Oriented Understudy for Gisting
Evaluation

ROUGE−n =
total number of n-grams overlaps

total number of n-gram tokens in reference summaries

similar to BLEU (MT)
recall-based
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Machine Translation

Use computers to automate the translation from one
language to another

news articles
technical documents
minutes
restricted domain (sublanguage)

Machine translation for literature can be difficult, e.g.,
The Story of the Stone, Figure 25.1.
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Translation Example

There are 4 pairs of sentences in Figure 25.1.

The Chinese words have been replaced by the English
glosses.

A line between a gloss (“a Chinese word in English”)
and a word in the English sentence denotes their
correspondence.

For a pair of sentences, the entire correspondence
between words is called its alignment.
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Divergence

In these examples, there are quite a few English words
that do not have any correspondence in the Chinese
side.

determiners
pronouns

Another major difference is the word ordering .

The difference between languages
morphological
syntactic
semantic
lexical
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Vauquois Triangle

Figure 25.3

analysis, transfer, and generation
words: direct translation
syntactic: syntactic transformation
semantic: semantic transfer
interlingua : using meaning
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Direct Translation

morphological analysis

lexical transfer

local reordering
the reordering within a phrase

morphological generation

Figure 25.6 for an example of direct translation.
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Syntactic and Semantic Transfer

Adj Noun vs. Noun Adj

PP V vs. V PP

P NP vs. NP P

SOV vs. SVO

etc.
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Interlingua

semantic analyzer

meaning representation

natural language generation
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Noisy Channel Model

Without loss of generality, suppose the translation is
from French to English.

Consider a noisy channel where the channel input is
an English sentence ec and the output is a French
sentence f .

From output f we want to decide the optimal input e∗.

If the criterion is to minimizes the probability of error

Pr(e∗ 6= ec),

then

e∗ = arg max
e

Pr(e|f).
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Statistical Models

The decoding equation can be re-written as

e∗ = arg max
e

Pr(e|f) = arg max
e

Pr(e) Pr(f |e).

Therefore, we need to estimate
Pr(e) through a parameterized probability pθ(e),
called the the language model
Pr(f |e) via a parameterized probability pγ(f |e),
called the translation model.

In addition, we need to design a decoder for the above
search problem.
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Alignment

If f and e are a pair translation sentences, there is
some correspondence between the words in them.

Such correspondence is called alignment.

Specifically, if ei and fj are corresponded, we denote
that by an alignment variable and draw a line between
them

aj = i, fj — eaj
.

For those target words not aligned to any source word,

aj = 0.

That is, e0 = NULL.
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IBM Model 1

Choose a sentence length J

Pr(J |e)
.
= ǫ;

Choose a set of alignment values a according to the
uniform distribution

Pr(a|e, J)
.
=

J
∏

j=1

1

I + 1
, I = |e|;

Choose the words f according to translation probability

Pr(f |e, J,a)
.
=

J
∏

j=1

t(fj|eaj
);
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Putting It Together

According to IBM Model 1,

Pr(a, f |e) =
∑

J ′

Pr(J ′,a, f |e) = Pr(J,a, f |e), J = |f |

= Pr(J |e)Pr(a|e, J)Pr(f |e, J,a)

.
=

ǫ

(I + 1)J

J
∏

j=1

t(fj|eaj
).

Thus, the translation model probability is

Pr(f |e) =
∑

a

Pr(a, f |e)
.
=
∑

a

ǫ

(I + 1)J

J
∏

j=1

t(fj|eaj
).
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IBM Model 2

In IBM Model 1, the alignment probability for fj is a
constant (uniform).

Pr(aj|e, J)
.
=

1

I + 1
.

In Model 2, this model is changed to

Pr(aj = i|e, J)
.
= a(i|j, J, I).

It follows that

Pr(a, f |e)
.
=

J
∏

j=1

a(aj|j, J, I)t(fj |eaj
).
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Probability Factorization

Both Model 1 and Model 2 are based on the following
factorization

Pr(a, f |e) = Pr(J, a, f |e) = Pr(J |e)Pr(a, f |e, J)

= Pr(J |e)
J
∏

j=1

Pr(aj |a
j−1
1 , f

j−1
1 , e, J)Pr(fj|a

j
1, f

j−1
1 e, J)

The scenario behind this factorization is to generate
the French words sequentially. For a given position j

choose the aligned English word position aj ;
then choose the French word fj;

This is, however, not the only way to specify Pr(a, f |e).
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Alternative Factorization

An alternative scenario of generating f is as follows.

For each ei ∈ e, we first choose the number of words
φei

attached to word ei, which is called the fertility .

If the sum of fertilities is less than J , we hold e0

responsible for the remaining words,

φ0 = J −

I
∑

i=1

φei
.

We then choose the list of words for each ei.

Finally, we place them in the right positions to form the
sentence f .
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Notations

T = (T0, . . . , TI): the lists of words for e0, . . . , eI .
T is called the tableau of e.
Ti = {Ti1, . . . , Tiφi

} is called the tablet of ei, where
Tik is the kth word of Ti.

Φ = (φ0, . . . , φI): the fertility of e0, . . . , eI .
φi is the fertility of ei.
Φ is a determined by T .

Πik: the position of Tik in f .
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Probability

According to the generation process, for an instance of
word lists and permutation pair (τ, π), the probability is

Pr(τ, π|e) =

I
∏

i=1

Pr(φi|φ
i−1
1 , e) × Pr(φ0|φ

I
1, e) ×

I
∏

i=0

φi
∏

k=1

Pr(τik|τ
k−1

i1 , τ i−1
0 , φI

0, e) ×

I
∏

i=1

φi
∏

k=1

Pr(πik|π
k−1

i1 , πi−1
1 , τ I

0 , φI
0, e) ×

φ0
∏

k=1

Pr(π0k|π
k−1

01 , πI
1 , τ I

0 , φI
0, e).
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Alignment Probability

Different pairs of word list and permutation may lead to
the same alignment a, so

Pr(a, f |e) =
∑

(τ,π)∈<f ,a>

Pr(τ, π|e),

where < f ,a > is the set of pairs of list and permutation
to produce alignment a and sentence f .

Given a, f , the total number of indistinguishable pairs of
permutation and word list is

I
∏

i=0

φi!.
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IBM Model 3 Assumptions

Pr(φi|φ
i−1
1 , e) depends only on φi and ei;

Pr(τik|τ
k−1

i1 , τ i−1
0 , φI

0, e) depends only on τik and ei;

Pr(πik|π
k−1

i1 , πi−1
1 , τ I

0 , φI
0, e) depends on πik, i, J , and I;

Part V: Applications – p. 50



Probabilities in Model 3

fertility probability

Pr(Φei
= φ|φi−1

1 , e)
.
= n(φ|ei);

translation probability

Pr(Tik = f |τ k−1
i1 , τ i−1

0 , φI
0, e)

.
= t(f |ei);

distortion probability

Pr(Πik = j|π k−1
i1 , πi−1

1 , τ I
0 , φI

0, e)
.
= d(j|i, J, I);
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e0

The probability p(φ0|φ
I
1, e) is assumed to be

Pr(φ0|φ
I
1, e)

.
=





φ1 + φ2 + · · · + φI

φ0



 p
φ1+φ2+···+φI−φ0

0 p
φ0

1 .

The idea is that each word in τ I
1 independently requires

an extra word with probability p1, and no word with
probability p0 = 1 − p1.
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Putting Together

Using these models, we have

Pr(τ, π|e)
.
=

I
∏

i=1

n(φi|ei) ×





J − φ0

φ0



 p
J−2φ0

0 p
φ0

1

×

I
∏

i=0

φi
∏

k=1

t(τik|ei) ×

I
∏

i=1

φi
∏

k=1

d(πik|i, J, I) ×
1

φ0!

Given a, f ,

Pr(a, f |e)
.
=





J − φ0

φ0



 p
J−2φ0

0 p
φ0

1 ×
I
∏

i=1

φi! ×
I
∏

i=1

n(φi|ei)

×
J
∏

j=1

t(fj |eaj
) ×

J
∏

j:aj 6=0

d(j|aj , I, J).
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Deficiency

In Model 3, it is actually allowed that several French
words occupy the same word position, i.e.,

πik = πi′k′ .

These ill-formed sentenceshave non-zero probabilities,
so the total probability of valid sentences is less than 1.

This is called deficiency.

Here, deficiency occurs because the assignment of the
positions of new words does not rule out the positions
already assigned.
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Model 3 and Model 4

The probability for assigning a position is called the
distortion probability

Pr(Πik = j|π k−1
i1 , πi−1

1 , τ I
0 , φI

0, e).

In Model 3 it is assumed that the above probability
depends only on j, i, J, I.

Pr(Πik = j|π k−1
i1 , πi−1

1 , τ I
0 , φI

0, e)
.
= d(j|i, J, I).

In Model 4, there are two probabilities for the distortion
probability.
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Notations

[i]: the position in e of the ith one-word cept
a word e is a cept if φe > 0;
e0 is a one-word cept if φ0 > 0.

⊛i: the center of the ith one-word cept

The headof a cept e is the word in the list of words
aligned to e, whose position in f is the smallest.
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Displacement of Head Words

In Model 4, there are two components for the distortion
probability.

The first is the probability of placing the headof a cept

Pr(Π[i]1 = j|π
[i]−1
1 , τ I

0 , φI
0, e)

.
= d1(j − ⊛i−1|A(e[i−1]), B(fj)).

A(e), B(f) are word class functions.
j − ⊛i−1 is called the displacement. It may be
positive or negative.
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Non-Head Words

The second is the probability of placing the remaining
words.

For the kth word of cept i,

Pr(Π[i]k = j|π k−1
[i]1 , π

[i]−1
1 , τ I

0 , φI
0, e)

.
= d>1(j − π[i]k−1|B(fj)).

We require that π[i]k > π[i]k−1. That is, subsequent
words from τ[i] has to be in order.
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Deficiency in Model 4

Model 4 is still deficient.
Words are allowed to pile up;
They are also allowed to occupy before the first
position and beyond the last position.

After the placement of τ
[i]−1
1 and τ k−1

[i]1
, some vacancy

positions are there for the next word τ[i]k.

We can enforce the constraint that τ[i]k must occupy a
vacancy.

Let vj = v(j, τ
[i]−1
1 , τ k−1

[i]1
) be the number of vacancies

up to and including position j just before τ[i]k is placed.
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Model 5

For a head word,

Pr(Π[i]1 = j|π
[i]−1
1 , τ I

0 , φI
0, e)

.
= d1(vj |B(fj), v⊛i−1 , vI − φ[i] + 1)(1 − δ(vj , vj−1)).

The last term enforces position j has to be vacant.
We need to make sure that enough vacancies are
allocated for the subsequent φ[i] − 1 words.

For non-head words,

Pr(Π[i]k = j|π k−1
[i]1 , π

[i]−1
1 , τ I

0 , φI
0, e)

.
= d>1(vj − vπ[i]k−1

|B(fj), vI − vπ[i]k−1
− φ[i] + k)(1 − δ(vj , vj−1)).
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HMM Alignment Models

As an alternative to Model 2, the probability of f ,a

given e can be written as

Pr(a, f |e) = Pr(J |e)Pr(fJ
1 , aJ

1 |e) = Pr(J |e)
J
∏

j=1

Pr(fj , aj |f
j−1
1 , a

j−1
1 , e)

= Pr(J |e)

J
∏

j=1

Pr(aj|f
j−1
1 , a

j−1
1 , e)Pr(fj|aj , f

j−1
1 , a

j−1
1 , e)

With obvious model assumptions, this is approximated
by

Pr(a, f |e)
.
= p(J |I) ×

J
∏

j=1

p(aj |aj−1, I)t(fj |eaj
).
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Data

Machine translation models are trained with parallel
corpus.

text collection that is available in two languages
a. k. a. parallel text, bitext
Hansards

May need to do sentence segmentation, to produce
sentence pairs,

(fs, es), s = 1, . . . , S.
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EM

Given the alignment of each pair, we can estimate the
translation probability.

Given the translation probability, we can estimate the
alignment probability

Such a chicken-egg problem can be solved by EM.
In the E-step, we compute the expected counts for
estimating the translation probability t(f |e).
In the M -step, we compute the maximum-likelihood
estimate of t(f |e).
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A Simplified Version

Consider a simplified probability

Pr(a, f |e)
.
=
∏

j

t(fj |eaj
).

The posterior probability of the hidden variable a is

Pr(a|e, f) =
Pr(a, f |e)

Pr(f |e)
=

Pr(a, f |e)
∑

a
′

Pr(a′, f |e)

It is instructive to follow the steps given in the text.
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Log-Linear Models

The basic problem of MT is that we are given f = fJ
1 ,

and we want to choose e = eI
1 such that

êI
1 = arg max

eI
1

Pr(eI
1|f

J
1 ).

As an alternative to the noisy-channel model, the
posterior probability can be modeled directly.

In particular, the log-linear model for posterior
probability has the form

Pr(eI
1|f

J
1 )

.
= pλM

1
(eI

1|f
J
1 ) ∝ exp

(

M
∑

m=1

λmhm(eI
1, f

J
1 )

)

.
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Features and Parameters

In the log-linear model, we have

the feature functions hm(eI
1, f

J
1 )

the weights λm

The determination of the features and the weights is
the core problem in this framework.
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Decoding and Learning

decoding problem: search for the hypothesis with the
maximum weighted sum of features, i.e.,

êI
1 = arg max

eI
1

∑

m

λmhm(eI
1, f

J
1 ).

learning problem: decide the weights that maximizes
the posterior class probability of a training set,

λ̂M
1 = arg max

λM
1

S
∑

s=1

log pλM
1

(eIs

1 |fJs

1 ).
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Hidden Variables

Typically, Pr(eI
1|f

J
1 ) is decomposed with additional

hidden variables, such as the alignment a. We can
include such hidden variables in our models, i.e.,

Pr(eI
1, a

J
1 |f

J
1 )

.
= pλM

1
(eI

1, a
J
1 |f

J
1 ) ∝ exp

(

M
∑

m=1

λmhm(eI
1, a

J
1 , fJ

1 )

)

.

For example, in the alignment template approach, the
feature functions have the following form

h(eI
1, f

J
1 , πK

1 , zK
1 ).
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Phrase Extraction

The translation probability can be learned if we have
phrase-level alignments between pairs of sentences.

Such phrase-levelalignments can be extracted from
word-level alignments.

A word-level alignment can be represented by a matrix,
called alignment matrix .

An example is given in Figure 25.17 and 25.18.
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The Two Directions

There are two directions of translation given a
sentence pair.

Each direction produces a different alignment matrix.

Specifically, this is denoted by

Ae←f = {(aj , j) | aj > 0};

Ae→f = {(i, bi) | bi > 0}.

Ae←f is for the translation is from French to English.
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Symmetrizing Alignments

intersection: A = Ae←f ∩ Ae→f .

extension: alignment (i, j) is added to A if
(i = aj , j) ∈ (Ae←f\Ae→f ) and eaj

= ei has not an
alignment in Ae→f (ei is aligned to f0);
(i, j = bi) ∈ (Ae→f\Ae←f ) and fbi

= fj has not an
alignment in Ae←f (fj is aligned to e0);
(i, j) has a neighbor that is already in A, and
A ∪ {(i, j)} does not contain alignment with both
horizontal and vertical neighbors.
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Phrases Translation Table

Phrase pairs consistentwith A are extracted and stored
in a phrase translation table, along with the translation
probabilities.

A phrase pair
(

ei2
i1
, f

j2
j1

)

is consistent with an alignment

matrix if
all dots in the rows i1 to i2 and columns j1 to j2 are
contained in the corresponding submatrix.
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Phrase-Based Translation Model

Break e and f into phrases

eI
1 = ẽK

1 , ẽk = eik−1+1, . . . , eik

fJ
1 = f̃K

1 , f̃k = fjk−1+1, . . . , fjk

Align ẽ and f̃ at the phrase level;

We introduce a permutation πK
1 for the alignment at

the phrase level. That is, ẽk is aligned to f̃πk
.

The alignment between ẽk and f̃πk
introduces some

probability.
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Alignment Template

An alignment templatez is a triplet

z = (F J′

1 , EI′

1 , Ã),

where
there are J ′ French words in this template;
there are I ′ English words in this template;

F J ′

1 , EI ′

1 are the word classes of these words;

Ã is the word-level alignment between them;

The probability
Pr(z|f̃)

.
= p(z|f̃)

can be trained from parallel corpus.
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Alignment Template Model

Suppose ẽk is aligned to f̃πk
through an alignment

template zk,

ẽk
zk— f̃πk

Hence, our model introduces the hidden variables of
phrase-level alignments and alignment templates,

πK
1 , zK

1 .
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Feature Functions

alignment template selection

hAT(eI
1, f

J
1 , πK

1 , zK
1 ) = log

K
∏

k=1

p(zk|f
jπk

jπk−1+1)

word selection

hWRD(eI
1, f

J
1 , πK

1 , zK
1 ) = log

I
∏

i=1

pWRD(ei|{fj |(i, j) ∈ A}, Ei), A = Aπ,z

phrase alignment

hAL(e
I
1, f

J
1 , πK

1 , zK
1 ) =

K+1
∑

k=1

|jπk−1 − jπk−1
|, jπ0 = 0, jπK+1−1 = J.
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Feature Functions

language model features

hLM(eI
1, f

J
1 , πK

1 , zK
1 ) = log

I+1
∏

i=1

pLM(ei|ei−l+1, . . . , ei−1)

hCLM(eI
1, f

J
1 , πK

1 , zK
1 ) = log

I+1
∏

i=1

pCLM(C(ei)|C(ei−m+1), . . . , C(ei−1))

word penalty
hWP(eI

1, f
J
1 , πK

1 , zK
1 ) = I.
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Search Problem

Given fJ
1 , the decision rule for optimal eI

1 is

êI
1 = arg max

eI
1,πK

1 ,zK
1

{

M
∑

m=1

λmhm(eI
1, f

J
1 , πK

1 , zK
1 )

}

.

For simplicity, we consider the case of using the
feature functions of AT, AL, WRD, and LM (trigram),

êI
1 = arg max

eI
1,πK

1 ,zK
1

I
X

i=1

[λLM log pLM(ei|ei−2, ei−1) + λWRD log pWRD(ei|{fj |(i, j) ∈ A}, Ei)]

+
K

X

k=1

h

λAT log p(zk|f
jπk
jπk−1+1

) + λAL|jπk−1 − jπk−1 |
i

+ λAL|J − jπk
| + λLM log pLM(EOS|eI−1, eI).
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Structure of Search Space

We have grouped the contribution of feature functions
into those for each word, those for each alignment
template, and those for end-of-sentence.

Accordingly, the search space is structured to take
advantage of such decomposition of the objective
function.

Specifically, a search hypothesis
corresponds to a prefix of English sentence
is extended by appending one English word to
generate new hypotheses
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Search Graph

The set of all hypotheses can be structured as a graph.
a node n has a hypothesis;
there is a directed edge from node n1 to node n2 if
the hypothesis of n2 is obtained by appending one
word to that of n1;
each edge is associated with a cost related to the
feature functions;

Let the source node be sentence start, and goal nodes
be complete translations.

The search problem is now a graph search problemfor
the path with the minimum cost.
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Alignment Template Instantiation

An alignment template instantiation is the application of
an alignment template to a phrase.

Given fJ
1 , the set of all applicable alignment template

instantiations is
{

Z = (z, j) | z = (F J′

1 , EI′

1 , Ã) ∧ ∃ j : p(z|f j+J′−1
j ) > 0

}
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Decision

A decisionis a triplet d = (Z, e, l) consisting of an
alignment template instantiation Z, the generated word
e, and the index l of e in Z.

A hypothesis n = ei
1 corresponds to a valid sequence

of decisions di
1.

Any valid and complete sequence of decisions dI+1
1

uniquely corresponds to a translation eI
1, a

segmentation to K phrases, the phrase-level alignment
πK

1 , and the alignment template instantiations zK
1 .
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Possible Decisions

Start a new alignment template: di = (Z, ei, 1). The
incurred costs include AL and AT in addition to LM,
WRD, due to a new template Z and a new word ei.

Extend an alignment template: di = (Z, ei, l). The
incurred costs include just LM, WRD due to the
addition of ei.

Finish the translation sentence: di = (EOS, EOS, 0).
The incurred costs include AL and LM for EOS.
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Evaluation

Human raters

BLEU

BLEU = BP × exp

(

1

n

n
∑

i=1

log pi

)

pi is the modified i-gram precision
BP is brevity penalty

BP =







1, c > r

e(1−r/c), c ≤ r

where c is the length of the candidate translation,
and r is the length of the reference translation
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