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Machine Translation: A Score Years Ago

Chia-Ping Chen

Abstract

In this article, | will review a classic paper dnstatistical models, also known as the IBM Models,
of machine translation. These models are presented in ther of complexity. In this way, a reader can
clearly see the incremental improvements, by understgritii critical issues in the old models that the
new models try to address. Although the paper was writterostrtwenty years ago, to me the joy of

reading it has not faded over the years.
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. INTRODUCTION

The methodology for treating the machine translation mobin the paper by Brown et al. [1] is a

statistical one. Therein, the fundamental equation of rimectranslation is given by
é = argmax Pr(e)Pr(f|e), 1)
e

wheref is a sentence in French, aeds a candidate sentence in Engligh:(e) is called the language
model, andPr(f|e) is called the translation model. It is important to note it direction of translation
is from French to English in (1). The translation in the opfeodirection is an entirely different problem.
In order to understand (1), it may help to follow an imagimaticheme: Believe it or not, the creator of
a French text thinks in English! He first mentally composesEnglish text, denoted ky; for his thought.
Then he mentally translate the English text to French, a&hby f. The task of machine translation is
to come up with methods to decidebased orf such that the probability that - e is minimized. This
is illustrated in Fig. 1.

We can see from (1) that there are three core problems in dhisufation as follows:
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Fig. 1. Imaginative scheme for machine translation. A p@ssthought is mentally composed in English, and translated

French. The decoder is a machine translation system dekigneinimize the probability of erroPr(é # e).

« to propose adequate models Br(e) and Pr(f|e);
« to estimate the parameters in the proposed models;

« to search for the optimal candidage

The IBM models are special cases of translation modelg|e). Note it is not important foi’r(f|e)
to concentrate on well-formed French sentences, as a arefidf will always be given in a translation
from French to English. That is why we are going to see a feangely constructeflin the development

of the theory.

Il. ALIGNMENT

Assuming certain readers are familiar with the automatéesp recognition (ASR), | am going to draw
an analogy. In ASR, the training data for the acoustic model comes inspaiith each pair consisting of

a waveform and a phoneme (or word) sequence. It is not untisaiathe phoneme boundary times in the

*An alerted reader has probably already noticed that (1) tasame form as the fundamental equation of ASR
W =argmax Pr(W)Pr(A|W),
w
where Pr(e) is replaced by the language modet (1), and Pr(f|e) is replaced by the acoustic modet-(A|W). In fact,
both equations are instances of the noisy-channel commimicscenario. In speech recognition, a speaker (sousesbme
text in mind, then he generatespeech waveform for the text. The recognizer has to decode the hidden tex@¢dbas the
observed waveform. In machine translation, a person (spuhinks inEnglish, but he generateBrench for the thought in
English. The translator has to decode the hidden Englisedasa the seen French. Fred Jelinek was the leader of the IBM
research group at the times these models are proposed. HasdRh.D. thesis in information theory under Robert Fano in
MIT. It is not coincidental that such a information-thedcethinking plays fundamental roles in modern statistieadlduage and

speech processing.
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waveform are left unspecified, and somehow we need to dele&dddtailed correspondence between the
waveform segments and the phonemes. This detailed cordspoe is known as the “alignment”, and we
have the operation known as “forced alignment” to estimagdorrespondence. In machine translation
(MT), the training data for the translation model also corirepairs, with each pair consisting of a
sentencef in French and a senteneein English. Therefore, for each wordin e, we would like to
know the corresponding words ifi This correspondence essentially manifests the same ldhea
alignment in ASR.

The alignment in MT for the translation model is slightly reocomplicated than the alignment in
ASR for the acoustic model. In ASR, the alignment is almostagk left-to-right. In MT, on the other
hand, the correspondence are often out-of-order, and théswomrresponding to the same word may be
non-contingent. Therefore, MT necessarily requires a nsoreplicated scheme of alignment than ASR.

“Words” may appear to be natural enough to be the labelints dar sentences. However, in the later
development of machine translation, the “phrase-baseuttaghes have been proposed [2]. The “phrases”
are actually “alignment templates” derived from the aligmmhbetween words of parallel sentences. That
is the core technology of the Google translator, and wouldaénteresting subject, but we will not
pursuit it in this article.

Treating the sentencdse and the alignment, denoted ly as random variables, we can write

Pr(fle) = Y _ Pr(f,ale). (2)

Assuminge has! words andf hasm words, without loss of generality, we can factorize the tjoin
probability Pr(f, ale) by
Pr(f,ale) = Pr(mle) [ [ Pr(ajlal™", fi~",m,e)Pr(f;lal, fi~",m,e), ®3)

j=1
wherea; is the position of the English word thgt is aligned to, i.e.,

eaj — fj- (4)

In (3), it is implicitly assumed that each French word is aéd to at most one English word. Those
French words not aligned to any English word is said to benaligto the “null word”, denoted byj.
From the perspective of an English woegl it can be aligned t® or multiple French words, which

happens if

a; 752 V3, or aj; = aj dj # j/. (5)
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Fig. 2. The generating process of Model
I11. MODEL1
Referring to the general probability factorization (3),Ntodel 1 it is assumed that
o ¢ = Pr(mle) is independent ofn ande;
o Pr(ajla]™", f7=", m,e) depends only o, and consequently must e+ 1)1
« Pr(filal, fi~",m,e) depends only orf; ande,,, thus defining aranslation probability
t(filea,) & Pr(filat, f{ m,e). (6)
With these assumptions, (3) becomes
Pr(f,ale) (filea,), (7)

and the “likelihood” of the parallel sentenc&e) is given by

Pr(fle) = ZPT (f,ale) = l—|—1 — Z Z Ht filea,)- (8)

an,=0j=1
The translation probabilities( f|e) are estimated to maximizBr(f|e) subject to the constraints that

D t(fle)y=1, Ve 9)
f

The generating process is depicted in Fig. 2.

An iterative algorithm can be used to estimatg|e), given an initial estimate and a training set of
parallel sentences. The basic idea of iteration is as fallow



ACLCLP NEWSLETTER 5

« The word-pair count, denoted by fle; f, e), is accumulated over the set of training parallel sen-
tences, based on the number of co-occurrenceg @f) and the current estimate off|e);

« These counts are renormalized to update the estimatéfp).

The count of an instance of co-occurrenceeoff is weighted by the posterior probability of an
alignmenta in which f is aligned toe. The non-integral count ofr(alf,e) is also known as the
“probability count” or the “soft count”. From the definitionf posterior probability, we have

Pr(f,ale)

In (10), the numerator, the joint probabilityr(f,ale), can be straightforwardly computed. For the

denominator, the data-likelihooBr(f|e), it turns out the summation in (8) can be re-written as

m 1
Pr(fle) = Z ZHtmea] 11> t(file). (11)

a,m=0j=1 7j=111=0
It turns out that (11) makes the computation for the caufite; f, e) exact and efficient, which remains

the same way in Mode2.

IV. MODEL 2

Referring to the general probability factorization (3),Ntodel 2 it is assumed that

« ¢ = Pr(mle) is independent ofn ande (the same as Modl);
. Pr(aj|a{_1, f‘l,m,e) depends only on, a;, andm, as well as orl, thus defining aralignment
probability

a(ajlj,m,1l) £ Pr(aj]a{_l, f_l,m,e); (12)

o Pr(fj\al, g—1 ,m,e) depends only orf; ande,,, which is modeled by a translation probability
t(fle) (the same as Moddl).
The generating process with the new probability is depidteffig. 3. With these assumptions, (3) is

reduced to

Pr(fle) _EZ Z Ht filea,)a(ajlj, m,1). (13)

a,=0j=1
Along with the translation probabilities(f|e), the alignment probabilities(a;|j, m,l) are jointly

estimated to maximizér(f|e) subject to the constraints that

l
Za(aj =i|j,m,l) =1, VYj,m,l. 14)
=0
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Fig. 3. The generating process of ModelCompared to Model, the alignment probability is modified.

The aforementioned iterative algorithm to estimdtge) can be adapted to estimate|e) anda(i|j, m, 1)
jointly.

Note that Modell is a special case of Modé| so the parameters of Mod2Ican be initialized by the
parameters of Model. Specifically, one can compute the alignment probabilityMndel 1 with ¢(f|e),

and then collect the required counts to initializg|j, m, ) of Model 2.

V. FERTILITY AND PERMUTATION

Another generating process from givento f is as follows. The number of words the woeg in
e generates is called thfertility of e;, denoted by®.,, and sometimes abbreviated By when there
is no ambiguity. The list of words foe; is denoted byT;, called thetablet of ¢;. The k-th word in
T; is denoted byT;,. The collection ofT; is denoted byT, called thetableau of e. The words in a
tableau are permuted to produ€e The permutation is denoted byIl, in which the position of the
word T;;, is denoted bylI;,.. Note that from instantiations of tabledl= r and permutatiodl = 7, the
corresponding instantiations of alignmenand French stringf are determined.

According to this generating process, the conditional pbilily of T = 7,II = 7 given e can be

fNote we say “string” instead of “sentence” for reasons to taged later.
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factorized as l

Pr(r,xle) = [ Pr(¢il¢i " e) x Pr(go|d],e) x

=1
L ¢
H H PT(Tik|7—i1k_1>T(§_lv ¢67e) X
=0 k=1
Lo (15)
H H Pr(w,—k|7rif_1, wi_l, T(l), gbé, e) x
i=1k=1
®o
H PT(T"Ok’ﬂ'OIf_lﬂﬂ'llﬂTéa(bf)ae)'
k=1

The generating process is depicted in Fig. 4.
It is important to recognize, as the null English word. We usg for those French words not aligned
to any English words in Model$ and2. It has the same function in the current generating prodass.

the current generating process, it is used to make the nsnalbéine words in the tableau sumite, i.e.,

l
Dy =m—» B, OF gp=m—> ¢ (16)
] =1

VI. MODEL 3

Referring to the factorization (15) based on the genergpimtess of fertility and permutation, in
Model 3 it is assumed that

o Pr(q&i\(bil_l,e) fori=1,...,1 depends only or; and ¢;;

o Pr(rlr,i 77t ¢, e) for i = 0,...,1 depends only on;, ande;;
o Pr(my|m =t 77t 1l b e) fori =1,...,1 depends only om, 4, m, andl;

The corresponding probability functions in Modehkre
o n(dle;) £ Pr(®,, = ¢|¢", e) is called thefertility probability;

t(flei) & Pr(Ty = flr,f', 7071, ¢b, e) is thetranslation probability the same as in Models—2;

d(jli,m,1) 2 Pr(Ty, = jlm, = 7=t 1), ¢h, ) is called thedistortion probability

For the fertility ®.,, the probability function is

(bl +oeeet (bl P14+ P1—po,_do
Py 1

Pr(®,, = ¢o|d},e) = where po+pi=1. (17)

%o
« For the permutatiorily, the probability function is
. %, if j is vacant
PT(HOk :j|7T01_177Tl177-é>¢l07e) = ’ (18)
0, otherwise
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Fig. 4. The generating process based on fertility and petiout This is the basis for Modes— 5.

A pair of instances of tableau and permutat{@ = 7, IT = 7) correspond to a unique pair of string

and alignment(f, a). With the assumed probability functions, (15) becomes

¢1+"'+¢l 1 11— @0 0
Pr(r,n|e) = | | n(oile;) pg) totdi—o pd) X

!
) (
2‘1;[1 %o
H 75(fj |e(l]‘ ) X
j=1 (19)

m
H (4laj,m,1)x

7=1
1
Po!’

where f; is the French word in thg-th position off, a; is the position of the English word tha is
aligned to, andn is the length off. The display of (19) purposely parallels (15) for the readerfollow

the correspondence.
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It is interesting to note that in Modél the generated strinfj is allowed to skip word positions. Such
a string is called aeneralized stringContrarily, the sentences we have been thinking about @ltedc
the normal strings where each position is occupied by exactly one word. Theggasegent of non-zero
probability to the non-normal strings brings up the issuéeficiency which will be addressed in a later
model.

The number oindistinguishableableau-permutation pairs fdf, a) is

!
H bil. (20)

That is, (20) is the total number of pairs @f, ) that result in the samé, a). Using (20) and (16), we
have
Pr(fle) = ZPT (f,ale)
! (21)

_ Z m¢ o pgb_zd"’p‘f“ Hn(¢2|ez) X Ht(fj|eaj)d(j|aj>m>l) X qul'
a 0 =1

j=1 i=1
Unlike Model 1 and Model2, the counts we need in order to update the probabilities arlomger
exactly and efficiently computable. Suffice to say that wé Bakck to certain approximate schemes to
accumulate the counts. Specifically, the summation oves¢hef all alignmentsd(e, f) betweene and

f is approximated by the summation over a sulisetf A(e,f) given by
8§ =N (V(elf:2))) U YN, (Vieself:2))). (22)

where the meanings of the notations are
o V(elf;2): the alignmenta with the maximumPr(ale, f) based on Mode2, also called the Viterbi

alignment;
« Vi;(e|f;2): the Viterbi alignment in the subset of(e, f) whereij is peggeé
« b>®(a): the alignment of convergence in the sertés!(a) £ b(b*(a)), whereb(a) is a neighbof

of a with the maximum posterior probability;

fInstead of ModeB, Model 2 is used because the Viterbi alignment can be obtained effigie
%4 is said to be pegged in an alignmenif a; = i.

YBy definition, two alignmentsa anda’

— differ by a move ifa; # a; for exactly oney;

— differ by a swap if there exisf # ;' such thata; = a//, a;; = a; anday = aj, for k # j, 5.

a’ is a neighbor ofa if a’ = a, or they differ by a move, or they differ by a swap.
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« N(a) is the set of all neighbors cf;

« b3 ;(a): the alignment of convergence in the seigs’(a) £ b;;(bf, ;(a)), whereb;._;(a) is the

]

neighbor ofa with the maximum posterior probability and is pegged,;

VII. DEFICIENCY

The probability factorization forPr(r,w|e) as shown in (19) enables us to quickly compute the
posterior probabilities of the neighbors of an alignmentjol is crucial in the approximation for the
parameter estimation of Modal

As is pointed out in Section VI, one issue about Moglé$ that it isdeficient In Model 3, part of the
probability mass is assigned to the generalized Frenchgstriin fact, Modelsl — 2 assign probability
to sentences that are not well-formed, so they are also defiti a different sense.

Note that deficiency is merely an “issue” rather than a “peatd], (or a “warning” but not a “bug”), as
in the current translation direction from French to Engliatwell-formed French senten€ewill always
be given. Under the circumstances, probabilities compustdg Modelsl — 3 are proportional to the

conditional probabilities thaf is a well-formed sentence, so it is not a problem.

VIIl. M ODEL 4

It is noted that in ModeB, the movement of a long phrase will incur lardistortion penalty(i.e. low
probability) as each word in the phrase is treated the sanyeawanoving independently. However, it is
common sense (to linguists, at least) that the words catistita phrase tend to move around a sentence
jointly, rather than independently. Therefore, in Modgethe probability model for distortion is modified
to allow easier phrase movements than in Matlel

In Model 3, an English word, say;, generates a tablet of; words, 7;q, ..., 74, If ¢; >0, ¢; is an
one-wordcept! and the corresponding; words aligned tce; constitute a phrase in a loose sense.

In Model 4, two sets of probability are introduced to make the joint sroent of the French words
corresponding to a one-word cept easier:

« the probability to place the first word, called the head wamdthe one-word cept;

« the probability to place the remaining words, if any;

For the head word, the probability for placing the head wdrthe i-th one-word cept is

Pr(Iyy = jlmi ™t r dhe) 2 doy (5 — ©5-1]Alepy 1), BU;)),  [i] > 0. (23)

IA ceptis a fraction of acon-cept
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Note that in (23)

« [i] denotes the position in the English sentence of itfile one-word cept (not&] > 4, since¢;

could be0 for some English words;);

« O, is the center (ceiling of average) of the positions for theneh words generated lay;

e j— 0O;_1 is called the displacement of cepptmeasured from the previous cept;

o A(e) andB(f) are the word classes of the English werénd the French word respectively.

For the remaining non-head words, the probability for pigdhe k-th word of thei-th one-word cept
is

Pr(Mgy, = jlm it m il dh, e) 2 dor (G — mapaa [BS), 1] > 0,k > 1. (24)

Note that in (24)d1(n|B(f)) = 0 for n < 0. That is, the conditionr;);, > m;,—; is enforced, meaning
the wordsry;1, . .., 754, IN @ cept must be placed left-to-right fn

Again in Model4, the counts we need in order to update the probabilities erexactly and efficiently

computable. Instead, the summation is over a suSseft A(e, f) given by
S=NE=(V(elf;2))) | YN, (Vies(elf:2). (25)

The difference between the set (25) used in Motlahd the set (22) used in Modalis b(a) andb(a).
Recall thatb(a) is the neighbor of the alignment with the highest posterior probability’r(-|f, e; 3).
Here, to findb(a) requires us to firstly rank the neighborsaby the posterior probabilityr(-|f, e; 3),
then to look for the highest-ranking neighbgrwith Pr(a’|f,e;4) > Pr(alf,e;4), and seta’ = b(a).

IX. MODEL5

Model 5 is introduced to deal with the issue of deficiency. In Modlethe probability for placing the

head word of the-th one-word cept is
Pr(Ily, = I AL 8 e) 2 doy (v B(f)), ve, s vm — by + 1)(1 = 0(vj,v5-1)), (26)

wherev; is the number of vacancies up to and including positigost before we placey;;, in f. Note
that

e (1 —0(v;,vj—1)) ensures that position must be vacant if a head word is to be placed there;

« vm — @[+ 1 is the number of vacancies pre-excluding those to be ocdupighe remaining words

of the i-th one-word cept;

« vg. , IS the number of vacancies up to and including the centereptlevious one-word cept, i.e.,

position©;_1;
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For the non-head words, the probability for placing thth word of thei-th one-word cept is

Pr(Ij;, = j|7T[£1_177T¥}_1>Té> )
(27)
£ do1(vj — Ve IB(f5)s U = Vs — G + k) (1 = 6(vs,v5-1)),  [i] >0,k > 1.
A set based on and trimmed from the set defined by (25) is usgdttwer the counts required for the
parameter estimation in Modsl
Both Models3 and4 are deficient. From (26) and (27), we make sure that at anyt pbthe generating
process frome to f, the word to be placed must occupy a vacant position. ThuseMods no longer

deficient.

X. CONCLUSION

In this article, | try to convince the readers that machia@station is an interesting problem, by going
through the classic paper by Brown et al. | hope the readersigy the mathematical treatment as much
as | did when | first came across it a decade ago. | was trulilettirio see that mathematics, statistics,
and engineering can be combined so beautifully to tacklerdlk problem of machine translation.

Peter Brown and Bob Mercer left IBM and joined the Renaissarechnologies, which stands today
as the richest hedge fund investment company, shortly @ifésr published this paper. They are co-CEOs
as of the year of 2010. For another example for the varietycbfewements by the people working on
machine translation, | will add that Krzysztof Jassem [Bffém Poland, is a world life master in the

game of bridge.

XI. EPILOGUE

While writing this article, | heard about the sad news thatd=delinek passed away (18 November
1932 - 14 September 2010). Professor Jelinek was a critdiaf in applying statistical approaches to
machine translation [5]. According to himself, he actualiymbled upon speech and language processing.
Nonetheless, | believe he is one of the greatest foundersoafiem automatic speech recognition and
machine translation with the statistical methodology. Vehtéhe impression that he has ways to explain

statistical automatic speech recognition clearly [6].
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