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Abstract—Improving the noise robustness of automatic speech
recognition systems has been a challenging task for many years.
Recently, it was found that Deep Neural Networks (DNNs) yield
large performance gains over conventional GMM-HMM systems,
when used in both hybrid and tandem systems. However, they are
still far from the level of human expectations especially under ad-
verse environments. Motivated by the separation-prior-to-recog-
nition process of the human auditory system, we propose a robust
spectral masking system where power spectral domain masks are
predicted using a DNN trained on the same filter-bank features
used for acoustic modeling. To further improve performance,
Linear Input Network (LIN) adaptation is applied to both the
mask estimator and the acoustic model DNNs. Since the estimation
of LINs for the mask estimator requires stereo data, which is not
available during testing, we proposed using the LINs estimated for
the acoustic model DNNs to adapt the mask estimators. Further-
more, we used the same set of weights obtained from pre-training
for the input layers of both the mask estimator and the acoustic
model DNNs to ensure a better consistency for sharing LINs.
Experimental results on benchmark Aurora2 and Aurora4 tasks
demonstrated the effectiveness of our system, which yielded Word
Error Rates (WERs) of 4.6% and 11.8% respectively. Further-
more, the simple averaging of posteriors from systems with and
without spectral masking can further reduce the WERs to 4.3%
on Aurora2 and 11.4% on Aurora4.

Index Terms—Deep neural network, noise robustness, spectral
masking.

I. INTRODUCTION

D EEP neural networks (DNNs) have been adopted in
many Automatic Speech Recognition (ASR) systems.

Large performance improvements have been reported com-
pared to systems that use Gaussian Mixture Models (GMMs) to
represent the state emission probability distributions [1]. Basic
DNN-based ASR systems, when trained with large amounts
of data, have been found to yield superior performance over
advanced GMM-based systems that employ a combination of
different optimization techniques [2]. For noisy speech recog-
nition, DNNs have also obtained comparable performance to
the best GMM system with various noise reduction, feature
enhancement and model-based compensation methods [3].

Manuscript received August 01, 2013; revised December 02, 2013; accepted
June 02, 2014. Date of publication June 05, 2014; date of current version June
25, 2014. The associate editor coordinating the review of this manuscript and
approving it for publication was Dr. Shinji Watanabe.
The authors are with the School of Computing, National University of Sin-

gapore, 117417 Singapore (e-mail: li-bo@outlook.com; simkc@comp.nus.edu.
sg).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TASLP.2014.2329237

However, DNNs are still far from reaching humans’ expecta-
tions and few methods have been developed to further improve
DNNs’ noise robustness [3]–[6].
To a certain extent, DNNs may be capable of learning

some noise-dependent feature normalization effects implicitly
through multiple layers of non-linear transformations. How-
ever, it will still be useful to explore explicit noise robustness
techniques for DNNs. In general, feature compensationmethods
can easily be applied to DNNs as they are independent of the
recognition models [3], [5]. However, these methods have only
been found to yield performance gains for clean-trained DNNs
due to the huge difference between the clean training data and
the noisy testing data. With multi-style data, slight degradations
have been observed when enhanced spectral features, which
have been found to work well for GMM systems, are used to
train DNNs [5]. This may be attributed to the imperfect en-
hancement process, which can potentially discard useful speech
information and bring in unwanted distortions. Similarly, the
Vector Taylor Series (VTS)-based feature compensation has
also failed to yield gains for acoustic model DNNs [6].
Techniques specific to DNNs were hence developed. In [7], a

Deep Recurrent Denoising Autoencoder (DRADE) was trained
to reconstruct clean features from noisy ones. It makes no
assumptions about how noise affects speech, nor the existence
of distinct noise environments. It depends on the training data
to provide a reasonable sample of the noise environment. In [8],
a Factorial Hidden Restricted Boltzmann Machine (FHRBM)
was proposed to explicitly model the noise distribution and
how noise affects speech. However, due to the unobserved
noise parameters, inference is intractable as the computational
complexity scales exponentially with the number of hidden
units. Our previous work [6] treated global Mean and Variance
Normalization (MVN) as a Gaussian-based normalization
front-end for DNNs and applied VTS to transform it towards
the target testing scenario. But the oversimplification of the
single Gaussian-based compensation limits its effectiveness.
It yielded moderate performance gains only when adaptive
training was used. In [3], the authors concatenated acoustic
features with noise parameters of the corresponding utterance
to train a “noise aware” DNN. However, this “noise aware”
DNN yielded only a small gain. By further fine-tuning this
DNN using dropout techniques, clear improvements were
obtained [3].
When searching for methods that can lead to further per-

formance gains, insights from the human speech perception
process may be helpful. The human auditory system is ca-
pable of efficiently identifying and separating speech and
noise prior to understanding [9]. Therefore, in this paper, we
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investigate this “separation-prior-to-recognition” process via
spectral masking for noise-robust speech recognition. Firstly,
a DNN-based Mask Estimator (ME) was developed. Esti-
mated masks were used to transform the noisy speech power
spectrum into noise-invariant representations. Due to the use
of DNNs for mask estimation, MEs are sensitive to training
and testing mismatches. We then proposed to adopt a Linear
Input Network (LIN) adaptation technique into our system. A
batch mode adaptation was used and one LIN transform was
estimated for each test set in an iterative manner. The estimated
LINs are effective in reducing training and testing mismatches
for Acoustic Models (AMs). But for MEs the LIN estimation
requires stereo data, which is not available in practice. To solve
this problem, we used the pre-trained Restricted Boltzmann
Machine (RBM) weights rather than the fine-tuned ones for the
DNN’s input layer. This modified DNN is referred to as the
RBM-DNN. A LIN transform can then be estimated for the
RBM front-end in an unsupervised manner using Contrastive
Divergence [10]. To further improve robustness, we also re-
placed the AM DNN with an RBM-DNN. Most importantly,
by sharing the input RBM layer between the AM and the ME,
the ME LIN transform can be learned by back-propagating the
AM prediction errors.
The rest of the paper is organized as follows. The proposed

spectral masking system is first described in Section II and
the adaptation using a Linear Input Network to address the
mismatch problem for both the AM and ME is discussed in
Section III. Experimental results on Aurora2 and Aurora4 are
presented in Section IV and we conclude the paper in Section V.

II. SPECTRAL MASKING

One of the important properties of auditory nerve responses
in human speech perception is that they respond preferentially
to certain frequencies [11]. To replicate this phenomenon of
masking in human auditory perception, source segregation in
computational auditory scene analysis can be achieved by com-
puting a mask to weight the Time-Frequency (T-F) representa-
tions, such as the spectrograms of acoustic signals. This mask
applies a weight to each T-F unit, such that spectral-temporal
regions that are dominated by speech are emphasized, and re-
gions that are dominated by other sources, such as noise, are
suppressed. Values of the mask are either binary or real-valued;
in the later case, the mask value can be interpreted as the ratio of
the target energy to the mixed energy or the probability that spe-
cific T-F unit “belongs” to the target speech. A time-frequency
weight of this kind was first employed in the binaural source
separation algorithm described in [12], and has subsequently
been adopted by other researchers [13], [14]. Recently, these
methods have also seen many applications in robust ASRs [15],
[16].
With stereo data, Ideal Binary Masks (IBMs) [17] have been

shown to substantially improve the intelligibility of speech with
background noise [18]. IBMs are computed in the power spec-
trum domain using:

(1)

Fig. 1. Spectrogram comparisons for the same speech “8055” under different
conditions: (a) clean; (b) with train noise at 0 dB SNR; (c) noisy spectrogram
(b) with IBMs; (d) noisy spectrogram (b) with DNN-estimated masks.

where represents the local Signal-to-Noise Ratio (SNR)
at the time frame and the frequency channel . and
are the corresponding speech and noise energies. is a local
SNR criterion [18]. IBMs are used in a direct spectral masking
manner to remove noise-dominated T-F units [16], [19]. IBMs
cannot be obtained in practical situations for spectral masking
since they are computed using stereo data. Therefore, various
classification-based algorithms for IBM predictions have been
developed [20]–[23]. With the fast adoption of DNNs in var-
ious machine learning tasks, the original support vector ma-
chines used for mask estimation were replaced by DNNs [23],
[24]. In those work, an ensemble of different features were used
as DNNs’ inputs and the mask estimation was performed in
two stages. Firstly, a total number of 27 DNNs were trained
using a single-frame input and 1,024 units per hidden layer. In
the second stage, a shallow neural network was estimated, to
give the final mask prediction by combining multiple frames of
output predictions from the first stage DNNs. After masking,
another reconstruction DNN was used to convert the masked
partial spectral features to clean ones, which were then used as
inputs for the final acoustic model DNN.
In this study, we propose to use a single DNN for mask es-

timation. Our spectral masking system (Fig. 2) is comprised of
two DNNs: the Mask Estimation (ME) DNN and the Acoustic
Model (AM) DNN. Both DNNs are trained with the same log
Mel Filter-Bank (FBank) features so that they can share the
same RBM pre-training step. After that, the two DNNs will be
fine-tuned with different learning objectives.
The Mask Estimation (ME) DNN is trained using IBM

vectors, , as supervision labels. The -th component of
, i.e. , represents the probability, ,

that the -th power spectral component of the observa-
tion is dominated by speech. The DNN input at time
consists of a window of adjacent frames, i.e.

. The computation per-
formed by an -layer ME DNN is as follows:

(2)

(3)

(4)

where and are the model parameters for the -th
layer in the ME DNN; is the input to the -th layer.

is the sigmoid function. In training,
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Fig. 2. System architecture comparisons between the conventional DNN-based acoustic model (the lightly shaded upper part) and the proposed spectral masking
system (the unshaded lower part). We denote the DNN’s input nodes with black circles and the softmax output nodes with white circles. The sigmoid hidden units
and the mask estimator’s sigmoid output units are denoted with gray circles. The Linear Input Network (LIN) adaptation transforms for the mask estimator and
the acoustic model are represented as and respectively.

the ME DNN model parameters
were firstly initialized using the pre-trained RBMs and then

fine-tuned using the standard Error Back-Propagation (EBP) al-
gorithm [25] to minimize the Mean Square Error (MSE) over
the set of training samples :

(5)

To avoid potential errors brought by binarizing the estimated
masks, we directly apply those real-valued masks to noisy
speech through a component-wise multiplication. This is usu-
ally referred to as soft-masking. An example of the masked
power spectrogram obtained using our mask estimator DNN
is illustrated in Fig. 1(d). From these masked power spectra, a
new set of FBank features, , can be extracted accordingly
and are more invariant to noise.
Using these noise-invariant features,

, a canonical Acoustic
Model (AM) DNN can be trained to yield a more robust
phoneme posterior prediction , which is computed by:

(6)

(7)

(8)

Different from ME DNNs, the softmax function,
, is used in the output layer. The -th com-

ponent is an estimate of the posterior probability
for the Hidden Markov Model (HMM) state . Using Bayes’
rule, the observation probability of the input given the state
can be computed by:

(9)

(10)

where is the prior probability of state calculated from
the training data. is the observation probability that is
independent of the state sequence and can be ignored. The like-
lihood computation is hence commonly simplified to

, for generating the final recognition hypotheses
in the HMM framework [1], [26]–[28]. The model parameters
of the AM DNN, , are initial-
ized with the same set of pre-trained RBMs and then fine-tuned
using the EBP algorithm. However, the cross entropy objective
is optimized here:

(11)

where is the reference state label for the observation at time
obtained by a forced-alignment of the speech signal with its
corresponding transcription.

III. ADAPTATION USING A LINEAR INPUT NETWORK

In noisy speech recognition, large mismatches between
training and testing data are usually unavoidable due to the
inherent variability of noise. Performance degradations are
expected when the system is used in unknown noise conditions.
This has also been observed for DNN-based ASR systems
in [4]–[6]. In this research, a Linear Input Network (LIN)
adaptation technique [29]–[33] is used to address the mismatch
issue. Firstly, the mismatch problem affects the DNN-based
ME. Erroneous mask estimations dramatically degrade the
system performance, as observed in [20]–[23]. However, it
is impossible to directly estimate LINs for ME DNNs during
testing because the required IBM supervisions are not available
in practice. In this study, we propose two approaches to solve
this problem: namely RBM-based LIN adaptation and LIN
sharing. Secondly, the mismatch also happens in the masked
feature domain. Although masking aims to remove noise such
that features are made more similar to the clean speech, it
usually cannot achieve this objective because of mask estima-
tion errors (Fig. 1(d) vs. Fig. 1(a)). Moreover, ideally masked
features (Fig. 1(c)) are different from clean speech (Fig. 1(a)).
Retraining the AM with masked features is crucial. However,
the different mask estimation accuracies of the ME DNN on the
training and testing data may also cause potential mismatches



LI AND SIM: SPECTRAL MASKING APPROACH TO NOISE-ROBUST SPEECH RECOGNITION USING DNNs 1299

among masked features. Adopting additional adaptation trans-
forms for the AM DNN is necessary and beneficial. Our final
spectral masking system with LIN adaptation is depicted in
Fig. 2. For comparisons, a conventional DNN-HMM system
with LIN adaptation is also illustrated in Fig. 2. In this section
we first review LIN adaptation for the AM DNN and then
present the proposed ME DNN adaptation.

A. Acoustic Model Adaptation

Linear Input Network (LIN) adaptation [29]–[33] represents
training and testing feature mismatches with a weight matrix

and a bias vector . Instead of directly forwarding the
observation to DNNs, the LIN-transformed one is used:

(12)

It effectively adds an additional input layer to the original model
with a linear activation function, which is why it is referred to
as the Linear Input Network transform. The estimation of LIN
transforms is based on EBP and hence follows exactly the same
procedure as the AM DNN training:

(13)

(14)

and

(15)

where is the update iteration index and is
the learning rate. Commonly, we start with and

. Supervision labels are required for the gradient
computation. For unsupervised AM adaptation, recognition hy-
potheses are used instead. One potential problem is that the hy-
pothesis errors may impede gains from adaptation.

B. Unsupervised Mask Estimator Adaptation

Unlike in AM adaptation, no proper supervision labels could
be used for mask estimator adaptation. To solve this problem,
we propose using the pre-trained RBM weights instead of those
fine-tuned weight parameters for the DNN’s first layer. These
pre-trained parameters are estimated to minimize the RBM en-
ergy function, which is equivalent to maximize the data like-
lihood, using Contrastive Divergence (CD) [10]. No supervi-
sion labels are required in this process. To distinguish from
the standard DNN, we will refer to this modified DNN as the
RBM-DNN. With this modification, we do not need any super-
vision labels to adapt the input layer parameters using LIN trans-
forms. The RBM energy function with LIN is:

(16)

where are the RBM parameters and the subscript 1
implies it is the first layer of the RBM-DNN. is the input bias.
The update of the LIN parameters by optimizing the testing data
log likelihood using CD is:

(17)

(18)

where the operator “ ” computes the expectation value with
respect to either the “data” or the “model”.
Inspired by the success of reusing feature-space Maximum

Likelihood Linear Regression (fMLLR) transforms from a
GMM-HMM system to both shallow [33] and deep [34] neural
network acoustic models, we propose adapting the ME by
sharing transforms. Unlike systems in [23], [24], the use of the
same input between our AM and ME allows the exchange of
feature transforms. We hence investigate reusing adaptation
transforms estimated for the AM DNN to the ME DNN. Fur-
thermore, to ensure consistency in sharing transforms among
different models, we adopt the RBM-DNN for both acoustic
modeling and mask estimation, and further constrain them to
use the same set of input layer parameters, which are obtained
from the RBM pre-trained on the same input features using
Contrastive Divergence. These parameters are estimated to
generate generic hidden representations that are capable of
capturing the input data distribution and are independent of
both tasks. Empirically, we show that the LINs estimated for
the AM RBM-DNN perform much better for MEs than those
estimated for the pure DNN-based AM.

C. Structure Constraints for LIN

The use of long-span acoustic features in DNNs is important
to its superior performance; but it also causes a large increase
in the number of adaptation parameters in the LIN transforms.
For example, for a conventional 39-dimensional MFCC-based
GMM system, the feature-space Maximum Likelihood Linear
Regression (fMLLR) transform has around 1.5k ( )
parameters. For an 11-frame input windowDNN using the same
features, the LIN transform will have 184.5k (

) parameters. With the same limited amount of en-
rollment data, an estimation of the maximum likelihood based
fMLLR is undoubtedly more reliable than that of the discrim-
inative LIN. For a window of frames’ input, i.e.

, the LIN transform also has a
similar block structure:

...
...

. . .
...

...

...
...

. . .
...

...

(19)

where each is a transform similar to an fMLLR transform.
models the intra-frame correlation and models

the inter-frame correlation between frame and . To reduce
the number of parameters in LIN, we can first remove all the
inter-frame correlations by constraining for all .
This kind of LIN is referred to as the block diagonal LIN -
LIN(blk). Furthermore, we can constrain all the intra-frame cor-
relations to use the same transform, . This is referred
to as the shared block diagonal LIN, i.e. the LIN(shd). It has a
comparable number of parameters to an fMLLR transform. In
[24], a diagonal LIN has been adopted, which will be referred to
as the LIN(dig). With this strong constraint, LIN has the same
effect as MVN and is only used in utterance-based adaptations.
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IV. EXPERIMENTS

In this section, we justify the effectiveness of the proposed
adaptive spectral masking based noise-robust ASR system. Ex-
periments are carried out on both Aurora2 [35] and Aurora4
[36] datasets. For the computation of IBMs (cf. equation (1)),
the stereo training data including both the clean and multi-style
data has to be used to derive the noise energy by subtracting the
clean speech energy from the noisy speech energy. Other than
that, the AM training uses only the multi-style training data.

A. Aurora2

The multi-style training data of Aurora2 comprises 8,440 ut-
terances with 4 different noise scenarios (train, babble, car and
exhibition hall) at 4 different SNRs (20 dB, 15 dB, 10 dB, 5 dB),
as well as in clean conditions. All the test sets are grouped into
3 broad sets, A, B and C. They are all used for evaluation. Set
A has the same noise as the multi-style training data and set
B has four new noise types (restaurant, street, airport and train
station). For set C, there are only two noise scenarios (train and
street) but with additional channel distortions. For all the test
sets, 5 different SNRs are used for evaluation, with one addi-
tional 0 dB SNR compared to the training set.
A standard complex back-end GMM-HMM system was

built using the per-utterance Cepstral Mean and Variance Nor-
malized (CMVN) MFCC features by maximizing the training
data likelihood. The 16-state word-based HMM and the 5-state
silence model are adopted, leading to a total number of 181
HMM states. This GMM-HMM system is used to generate the
per-frame DNN training labels. For DNN systems, we used
24-dimensional FBank features together with their first- and
second-order derivatives as inputs. A per-utterance MVN was
also adopted for input feature normalization. A consecutive
11 frames of the acoustic features were concatenated as the
input to the DNNs. No language model was used for this task
and an equal probability digit-loop was adopted for decoding.
The open source Kaldi toolkit [37] was used to train both
the GMM-HMM systems and the DNN-HMM systems. A
threshold of 0 dB was used as the parameter in equation (1)
for the computation of IBMs on the training data. By applying
IBMs on the testing data, the WER lower bounds obtained on
set A, B and C were 1.1%, 1.0% and 1.2% respectively [38].
1) Finding the Optimal DNN Setup: For the DNN baseline

setup, we pre-trained a stack of 8 RBMs and then initialized
8 different DNNs with a different number of hidden layers.
2,048 hidden units were used for each hidden layer. The output
softmax layer was randomly initialized. Each RBM was trained
using a momentum of 0.5 for 10 iterations and followed by a
momentum of 0.9 for another 40 iterations. A constant 0.001
learning rate was used for the first layer Gaussian-Bernoulli
RBM and all the other Bernoulli-Bernoulli RBMs used a
learning rate of 0.1. An L2 weight penalty of 0.0002 was also
used. During fine-tuning, the “newbob” learning schedule [39]
was used. The learning rate was initially set to 0.015. After
each iteration of training, the learning rate was halved if the
frame accuracy improvement on a held-out cross-validation
set was less than 0.5%. The whole fine-tuning process stopped
when the learning rate fell below 0.0001. The best number of
hidden layers for this task is 4, which yields the best average

TABLE I
AURORA2 WER (%) PERFORMANCE OF DIFFERENT RBM-DNN
CONFIGURATIONS (“GEN” FOR PRE-TRAINED RBM LAYERS AND
“DIS” FOR DISCRIMINATIVELY FINE-TUNED DNN LAYERS)

WER of 5.0%. We hence used this 4-hidden-layer DNN system
as our AM DNN baseline.
2) RBM-DNN vs. DNN: Although the RBM-DNN is pro-

posed for adapting the ME, it is interesting to understand the ef-
fect of using an RBM input layer. We hence experimented with
different combinations of generative (“gen”) and discriminative
(“dis”) depths for the AM DNN. We use the term “generative”
only to suggest that the layers are obtained from the unsuper-
vised pre-training rather than the discriminative fine-tuning. Ex-
perimental results are tabulated in Table I with the first row as
the baseline DNN system. The RBM-DNN with only 1 RBM
performs the best among those with the same number of hidden
layers. It has lower WERs on all the test sets compared to the
standard DNN. With the same number of discriminative layers,
adding one and only one RBM input layer is also the best. We
hence take the RBM-DNN with 1 pre-trained RBM layer and 3
discriminatively tuned DNN layers as the new baseline, which
is both faster (1 less layer for fine-tuning) and more robust than
the standard DNN.
3) Spectral Masking: In the proposed spectral masking

system, we adopted the same model structure, i.e. the
RBM-DNN, for both mask estimation and acoustic mod-
eling with a shared RBM front-end. The baseline RBM-DNN
is denoted as system S1. Firstly the masked features were
directly decoded with the baseline acoustic model RBM-DNN
(i.e. system S2 in Table II). The mismatches between the
noisy features and the masked partial features led to a WER
performance degradation from 4.9% to 6.9%. After retraining
the AM RBM-DNN with the masked training data, i.e. system
S3 in Table II, the performance improved to a WER of 5.2%.
However, it is still worse than system S1. From Fig. 3 with
detailed WER changes from system S1 to S3, masking helps
in reducing WERs on matched conditions (such as subsets A1,
A3 and A4) and degrades for all the unknown conditions (such
as subsets B1, B2, B3 and B4). The only exceptional case
is subset A2, which has speech-like babble noise. This kind
of noise has distributions similar to the target speech and is
hence much more difficult for machines to identify, and mask
out, from the noisy speech mixtures. For most of the matched
noise types, the masking system S3 has larger improvements
on lower SNRs (such as 5 dB and 0 dB). For test set C, the
performance is improved on subset C1 with matched additive
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Fig. 3. WER changes from system S1 to S3.

TABLE II
AURORA2 WER (%) PERFORMANCE OF MASKED FEATURES

Fig. 4. WER changes from system S1 to .

noise, and degraded on subset C2 with unknown additive noise,
regardless of the channel distortions. This may suggest that our
masking system is more sensitive to additive noise rather than
channel distortions.
4) Acoustic Model Adaptation with LINs: To address the

training and testing data mismatch problem, we investigated
the effectiveness of LINs for AMs. An initial decoding was
required to generate adaptation hypotheses. One LIN was
estimated for each noise condition. For Aurora2, each test
set contains 1,001 utterances from the same 104 speakers.
It adds up to approximately half an hour of speech data. All
the utterances in one test set share the same noise condition
and SNR. The estimated LIN transforms are hence noise-
and SNR-dependent and speaker-independent. The LINs were
initialized to be identity matrices and iteratively updated using
EBP. To avoid over-fitting, 10% of the adaptation data was
held out as the validation set. The same “newbob” training
strategy [39] was used for LIN estimations. The evaluation
criterion used on this validation set was the frame prediction
accuracy. Experimental results in Table III show that the LIN
adaptation can slightly improve the baseline system S1 on
both set B and set C; but a slight degradation on set A can
be observed (from 4.5% to 4.6%). From Fig. 4, LINs could
hardly give improvements on matched conditions, as the AM
RBM-DNN had already captured those variations from the
training data. They are also sensitive to hypothesis errors, as
they degraded dramatically for speech at 0 dB in subsets A2
and A3. For mismatched noise types, LINs are effective in

TABLE III
AURORA2 WER (%) PERFORMANCE OF AM ADAPTATION WITH LINS

TABLE IV
AURORA2 PERFORMANCE OF ME ADAPTATION USING GENERATIVE LINS

improving performance by minimizing training and testing
feature mismatches.
5) Mask Estimator Adaptation with Generative LINs: To un-

derstand the effectiveness of adapting the ME, we first esti-
mated LINs using oracle IBM supervisions of the test data.
The results are tabulated in rows with “ora.” under the “LIN”
column of Table IV. The clear error reductions in all the test
sets for both the mask estimation and the word recognition sug-
gest the necessity of adapting the ME. In practice, one approach
of adapting the ME without IBM supervision labels is to esti-
mate LINs within the RBM learning framework as discussed in
Section III-B. The results are tabulated in rows with “est.” under
the “LIN” column of Table IV. These estimated LINs increase
mask estimation errors and have no significant effect on the
recognition performance. One explanation is that the LINs were
optimized for data reconstruction, rather than mask or phoneme
predictions.
6) Mask Estimator Adaptation using LIN Sharing: Another

approach of adapting the ME is to reuse LINs estimated for the
AM. Similarly, we first justified the potential of LIN sharing.
Oracle word transcriptions of the test data were used to esti-
mate LINs for the AM. These LINs, referred to as the “ora.”
LINs, were then directly applied to the ME. Both the standard
DNN and the proposed RBM-DNN were evaluated. Results in
Table V show that the “ora.” AM LINs are effective for our
RBM-DNN based masking system by reducing the average
WER of 5.2% to 4.3%, although they are not as good as the
“ora.” LINs directly estimated for the ME (cf. Table IV). In
practice, we do not have oracle word transcriptions for the test
data. Recognized erroneous hypotheses have to be used for the
LIN estimation. LINs obtained in this way are referred to as the
“est.” LINs in Table V. Degradations due to supervision errors
were observed for both systems. But for our RBM-DNN, the
“est.” LINs still improved both the mask estimation and speech
recognition performance on set B and C over the unadapted
system. The average WER of 5.2% obtained from the spectral
masking system S3 with the unadapted ME was reduced to
4.9% by using the “est.” LIN (the last row in Table V, which
will be referred to as system S4). From Fig. 5 with detailed
WER changes from S3 to S4, it can be seen that the degradation
on set A mainly happens on speech with 0 dB SNR. It is
probably due to the high error rate of the hypotheses generated
for those 0 dB speech data. In general, the shared LINs do
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Fig. 5. WER changes from system S3 to S4.

TABLE V
AURORA2 PERFORMANCE OF ME ADAPTATION USING LIN SHARING

Fig. 6. WER changes from system S4 to .

address the training and testing data mismatch problem. Our
RBM-DNN is not only more robust than the standard DNN,
but also more reliable in sharing transforms.
7) AM Adaptation with Spectral Masking: Next, we ad-

dressed the potential mismatches between the masked training
and testing data, by adapting the AM of system S4 with another
set of LINs. It will be referred to as system . The
results are listed in Table VI and the detailed WER reductions
are illustrated in Fig. 6. The best average WER of 4.7% was
achieved, which is also better than system . Most of
the gains come from lower SNRs. In Table VI, we also included
the results of adapting only the AM in system S3, which is
referred to as system . Comparing system
(Table III), system (Table VI) and system
(Table VI), the use of masks enables a more effective LIN
adaptation.
8) Constraining LIN Transforms: Adaptation with LINs has

improved system performance consistently. But errors in the su-
pervision hypotheses for LIN estimations have always caused
degradations on set A. To improve the adaptation robustness
against supervision errors, we propose to reduce the number of
parameters by constraining the LINs. This leads to the block
diagonal LIN - LIN(blk), and the shared block diagonal LIN -

TABLE VI
AURORA2 WER (%) PERFORMANCE OF SPECTRAL

MASKING WITH LIN ADAPTATION

TABLE VII
AURORA2 WER (%) PERFORMANCE COMPARISONS OF LINS

WITH DIFFERENT STRUCTURE CONSTRAINTS

LIN(shd). They were firstly evaluated in system . Re-
sults in Table VII show that the constraints fail to render any
improvements. Despite this, we nonetheless used those trans-
forms for our ME. The results in Table VII for system S4 show
that these constraints do improve our masking system. The gains
may have come from the ME’s high sensitivity to input fea-
ture mismatches. For the ME, each sigmoid output is indepen-
dent of the others. In the case of the AM, due to the softmax
function, shifts in the final prediction are probably normalized
away. Moreover, by further adapting the AM in our masking
system with constrained LINs, the best average WER of 4.6%
was achieved (the system in Table VII).
9) Posterior Interpolation: Comparing theWER breakdowns

of the conventional system (blk), i.e.without masking,
and the proposed masking system (blk) in Table VII,
performance complementariness is observable. System

(blk) performed the best on set B, while system
(blk) had the best performance on set A and C. In this experi-
ment, we simply averaged the posteriors generated from these
two systems and an average WER of 4.3% was achieved. No
further gain could be obtained by tuning the posterior inter-
polation weight from 0.0 to 1.0 by 0.1. The detailed SNR-de-
pendent WER breakdowns for system (blk), system

(blk) and the posterior interpolation system indicated
as “PostInter” are listed in Table VIII.

B. Aurora4

To justify the effectiveness of our proposed spectral masking
system, we tested it on the Aurora4 dataset, as explained in
this section. It is a medium vocabulary noisy speech recogni-
tion task. The multi-style training data consists of one half of
the total 7,138 utterances recorded by the primary Sennheiser
microphone and the other half recorded using one of the 18 dif-
ferent secondary microphones. Both halves include a combina-
tion of clean speech and speech corrupted by one of the six dif-
ferent noise types (street traffic, train station, car, babble, restau-
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TABLE VIII
AURORA2 WER (%) PERFORMANCE BREAKDOWNS OF SYSTEM “ (BLK)”, SYSTEM “ (BLK)”

AND THE POSTERIOR INTERPOLATION SYSTEM “POSTINTER”

rant, airport) at 10-20 dB SNR range. The clean training data,
which has the same number of utterances, was only used to com-
pute the training IBMs with a threshold of dB. There
are 14 test sets with the same six types of noise but at a 5-15 dB
SNR range. They are further grouped into 4 broad sets for easy
comparisons: clean, noisy, clean with channel distortions, noisy
with channel distortions, which will be referred to as A, B, C
and D, respectively.
1) Baseline System: A context-dependent GMM-HMM

system with 3,356 senones was trained using maximum like-
lihood estimation on the per-utterance CMVN normalized
39-dimensional MFCC features. It was also used to create
senone labels for training the hybrid systems. Decoding was
performed with the standard WSJ0 bigram language model.
DNNs were trained using 24-dimensional FBank features to-
gether with the first and second order derivatives. An utterance
level MVN was adopted. A context window of 11 adjacent
frames were used as the DNN inputs. The RBM training con-
figuration was the same as the one used for Aurora2 except
that we trained 200 iterations for the Gaussian-Bernoulli RBM
and 100 iterations for all the Bernoulli-Bernoulli RBMs with
a momentum value of 0.9. The same fine-tuning process used
previously in Aurora2 was adopted here. The DNN with six
2,048-dimensional hidden layers yielded the best WER of
13.8%. With two additional iterations of re-alignment and
re-training, we can reduce the average WER to 13.4% and no
further improvement could be obtained by doing more itera-
tions. By applying IBMs on the testing data, the WER lower
bounds obtained for set A, B, C and D were 4.9%, 6.5%, 8.0%
and 12.2% respectively. It gave a lower bound of 8.9% for the
averaged WER on Aurora4 [38].
2) RBM-DNN vs. DNN: We first justified the effect of using

RBM-DNN versus DNN on Aurora4. The results are listed
in Table IX. Similarly, the two RBM-DNN systems that had
one RBM front-end performed the best, at 13.2% and 13.1%.
This further verifies that adopting the generatively trained
RBM front-end is helpful, but too many RBMs also degrade
performance. The RBM-DNN with 1 RBM layer and 6 dis-
criminatively tuned DNN layers is then used as our baseline
system.
3) Acoustic Model Adaptation: We then evaluated the per-

formance of different LIN adaptations on this AM RBM-DNN.
One LIN transform was estimated for each test set using EBP
with recognition hypotheses. Each set has 330 utterances, cor-
responding to 40 minutes of speech. 10% of them were held out
as the validation set, which also uses recognition hypotheses as
references to guide the learning process. The utterances are from
8 different speakers. A small difference from Aurora2, how-
ever, is that they have different SNRs. Hence, the estimated test
set-dependent LINs captured only the noise type mismatches
and are speaker- and SNR-independent. Results in Table X show
that all the LINs are effective in reducing WERs on all the
test sets, including clean set A. This could be attributed to the

TABLE IX
AURORA4 WER (%) PERFORMANCE OF DIFFERENT RBM-DNN
SETUPS (“GEN” FOR PRE-TRAINED RBM LAYERS AND “DIS” FOR

DISCRIMINATIVELY FINE-TUNED DNN LAYERS)

TABLE X
AURORA4 WER (%) PERFORMANCE OF AM ADAPTATION

WITH DIFFERENT LINS

TABLE XI
AURORA4 WER (%) PERFORMANCE OF SPECTRAL MASKING

WITH DIFFERENT LIN ADAPTATIONS

multi-style training data. Compared to Aurora2, the acoustic
modeling complexity is much higher for this task. The AM
cannot maintain both a superior clean performance and better
generalization for noisy speech. Degradations on clean speech
of the multi-style model are hence expected. The LIN trans-
forms seem capable of fixing this problem. The largest relative
improvement of 14.6% (from 9.6% to 8.2%) was obtained on
set C. It clearly suggests the effectiveness of LINs in addressing
channel mismatch. Although for the best LIN(shd), the absolute
gain on set D (from 19.4% to 18.2%) is much larger than that on
set B (from 8.6% to 7.9%). The relative improvement is almost
the same, 8.3% on set D vs. 8.2% on set B.
4) Spectral Masking with LIN Adaptation: In this section,

we justify our proposed spectral masking system. Firstly, the
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TABLE XII
AURORA4 WER (%) PERFORMANCE BREAKDOWNS OF SYSTEM “ (BLK)”, SYSTEM “ (BLK)”

AND THE POSTERIOR INTERPOLATION SYSTEM “POSTINTER”

direct use of ME RBM-DNN degraded the performance from
13.1% (system S1 in Table X) to 13.5% (system S3 in Table XI).
However, our masking system did give improvements on set A
(from 5.1% to 4.7%) and C (from 9.6% to 8.7%). The gains
on set A come from the retraining of the AM on the masked
training data. With multi-style data, the AM has to compromise
between the clean and noisy data, which usually leads to degra-
dations on clean test data compared to the AM trained purely on
the clean training data. Althoughmasking cannot completely re-
move the noise, it does reduce feature variations (Fig. 1(b) vs.
Fig. 1(d)). This may lower the modeling complexity and im-
prove the performance of the multi-style trained AM on clean
speech. It is interesting to see improvements on speech with
only channel distortions as masks are defined to remove addi-
tive noise. One probable explanation is that the scaling of the
component-wise soft-masking is effectively doing a mean and
variance normalization in the power spectrum domain. For set
B and D, unreliable mask estimation was probably the reason
for degradations. To improve the performance, on one hand,
we can address the mismatches between the masked training
and testing data by adapting the AM of system S3, i.e., system

, which gives the WER of 12.5% (LIN(shd)). On the
other hand, we can address the mismatches between the original
training and testing features by adapting the ME of system S3
with LIN transforms estimated for the AM, i.e. system S4. Al-
though system S4 only brings the performance back to the base-
line performance (13.1%), the WER breakdowns differ a lot.
This is similar to what we have observed on Aurora2. By further
adapting the AM of system S4, which leads to system ,
we can achieve the best average WER of 11.8% (LIN(blk)) with
spectral masking. Comparing in Table X and our

, it can be seen that WER reductions are relatively
small. But the differences in the generated hypotheses are sta-
tistically significant [40]. For LIN and LIN(blk), the p-values
are all smaller than 0.001 and for LIN(shd), it is 0.018. These
suggest there are statistically significant differences between the
recognition hypotheses generated by these two systems despite
their similar average WER performance.
5) Posterior Interpolation: To exploit differences between

system and system , we simply averaged
the two sets of posteriors. Only the block-diagonal version of
LIN was experimented with and the results were tabulated in
Table XII. The average WER of 11.4% and the performance
gains on almost all the test sets clearly indicated the comple-
mentariness between these two systems. Adjusting the interpo-
lation weight from 0.0 to 1.0 by 0.1 did not give any further im-
provement. To the best of our knowledge, this WER of 11.4%
is currently the best reported performance on Aurora4.
6) Utterance-Based Adaptation: Throughout the research

thus far, we have estimated the LIN from a set of adaptation
data. Relaxing this requirement is more desirable for real world

TABLE XIII
AURORA4 WER (%) PERFORMANCE OF UTTERANCE-BASED LIN ADAPTATION

applications. In this experiment we justify the effectiveness of
our proposed spectral masking system in an utterance-based
adaptation scenario. One LIN was estimated for each test
utterance. The learning was exactly the same as previous cases,
except for the fact that no cross validation was used. Only one
iteration of LIN estimation on each test utterance was carried
out as no further gain can be obtained by doing more. Due
to the rather limited data, only the LIN(shd) was evaluated.
Results in Table XIII show that with LIN(shd), we can adapt
system S1 from an average WER of 13.1% to 13.0%. To further
reduce the number of model parameters, we kept only diagonal
elements of the LIN transform [24], which is referred to as
“dig”. A slightly better AM adaptation performance (12.9%)
can be achieved by doing this. Using LIN(dig) in our proposed

system, we reduced the average WER to 12.3%.
Similarly, the posterior averaging further reduced it to 12.1%.
Compared to using adaptation only ( ), the masking
system is much more effective.

V. CONCLUSIONS

In this paper, we have proposed an adaptive spectral masking
system that consists of a mask estimation component and an
acoustic model component, which are all based on Deep Neural
Networks (DNNs). Spectral masking is used together with
Linear Input Network (LIN) adaptation to achieve robust noise
reduction. Since the estimation of LINs for mask estimation
DNNs requires stereo data, the LINs estimated for acoustic
model DNNs were used to adapt mask estimators during
testing. For the reusing of the LINs to work well, the first layers
of both DNNs were constrained to share the same parameters,
which were learned during the pre-training stage. Besides im-
proving the reliability of transformation sharing, the so-called
“RBM-DNN” was also found to give a better recognition
performance compared to the pure DNN-based acoustic models
on noisy speech. By combining spectral masking for noise
removal and Linear Input Network adaptation for mismatch re-
duction, we achieved the best average Word Error Rate (WER)
performance of 4.6% on Aurora2 and 11.8% on Aurora4. The
combination of our proposed spectral masking system and the
baseline system through a simple posterior averaging further
reduced the WERs to 4.3% on Aurora2 and 11.4% on Aurora4.
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