Speech-based Emotion Recognition

陳嘉平

Multimedia Information Technology Lab
Department of Computer Science and Engineering
National Sun Yat-sen University
Kaohsiung, Taiwan

October 2012

"If you talk to a man in a language he understands, that goes to his head. If you talk to him in his language, that goes to his heart."

Nelson Mandela

"If you talk to a man in a language he understands, that goes to his head. If you talk to him in his language, that goes to his heart."

Nelson Mandela

 $\mathsf{talk} = \mathsf{speech}$

"If you talk to a man in a language he understands, that goes to his head. If you talk to him in his language, that goes to his heart."

Nelson Mandela

talk = speech

heart = emotion

Background

- speech
- emotion
- motivation

Speech

multitude of information in speech

- what is spoken?
 - → speech recognition
- who is speaking?
 - \rightarrow speaker verification
- which language is it?
 - \rightarrow language identification
- how is it spoken?
 - → emotion recognition

Emotions

happy

- mission accomplished
- when Jeremy Lin was running the Knicks

angry

- when partner blames you for his blunder
- plane delayed, flight missed, and nobody's sorry about it

fear

- in a car accident
- losing passport in Europe

sad

- watch movie ''no country for old men''
- when the cafeteria you often eat at moves out of campus

disgust

- rotten tomatoes
- fake stuff

surprise

- winning a lottery
- secret guests

Motivation

who needs to recognize emotions?

- always hear and observe
- in a long-term relationship
 - boss and subordinate
 - parent and child
 - teacher and student
 - husband and wife
 - friends
- during a short-term relationship (brief encounter)
 - customers and waiters
 - strangers

who wants to be emotional?

- \bullet strong emotional impacts lead to strong intellectual impacts \to emotion for better learning
- ullet emotional ups and downs happen at the critical times in life ullet emotion for better life
- memories, good or bad, remain for emotional experiences
 → they get sweeter as time goes by
- affects are the essence of human being (one who shows no emotions is difficult to be around with)
 - ightarrow emotion for better social networking
- showing emotions releases pressures
 - → emotion for better health, longer life
- being emotional is not the same as being irrational
 - \rightarrow it means touched, moved, engaged, etc.

who can automatic emotion recognition help?

- those who want to but cannot recognize emotions
 - expressive agnosia: inability to perceive emotional expressions,
 e.g., Anton Chigurh in ''no country for old men''
 - machines
 - robot
 - servers
- those who are prone to be emotional
 - athletes
 - in-pregnancy
 - kids
 - silver-age
 - hospitalized

Status Quo

- naïve definition of emotion states
- machine learning methodology
- data
- features
- models

Emotional State

continuous space

- valence (attitude)
- arousal (intensity)

discrete states

- happy
- sad
- angry
- fear
- disgust
- surprise
- ... other ... mixed ...

Recognition and Machine Learning

background

Machine learning (a.k.a. data-driven) methodology is now familiar to the research community.

emotion recognition via machine learning

- data collection
 - \rightarrow labeled or not labeled emotional speech
- feature design for data representation
 - \rightarrow informative, robust, etc.
- recognition model design
 - \rightarrow easy to learn, deploy, test, adapt, etc.
- performance evaluation and feedback

Data, Features, and Methods

- emotional speech databases
 - number of emotional states
 - language
 - number of speakers
 - kind: natural/simulated/elicited
- acoustic features
 - pitch
 - formants
 - vocal-tract cross-section area
 - MFCC
 - TEO-based features
 - intensity
 - speaking rate
- classification methods
 - HMM ANN LDA kNN SVM

Example (Dellaert et. al. 1996)

- 4 emotion categories
 - happy sad anger fear
- 1,000+ utterances with one emotion per utterance
- basic prosodic features
 - {mean, std, max, min, range} of pitch signal
 - global slope (of pitch) of linear regression
 - speaking rate
- basic classification methods
 - maximum-likelihood Bayes classifier
 - kernel regression
 - kNN

Example (Schuller et. al. 2004)

- 6+1 emotion categories
 - joy sad anger fear disgust surprise natural
- 3,000+ utterances
- acoustic + linguistic features
 - phrase spotting
- classification methods
 - kMeans
 - kNN
 - GMM
 - MIP
 - SVM
 - belief network (I.f.)
 - fusion (a.f. + l.f.)

Data Collection

label issue

- straightforward to transcribe speech, which is local and objective
- challenging to label the emotion, which is highly contextual and somewhat subjective
 - ground truth
 - unlabelled data

authenticity issue

- easy to collect speech data
- difficult to collect emotional speech data
 - acted data?

Features

detectable and indicative of emotion

common features for ER

```
\{ \text{rate, energy, pitch} \} \times \{ \text{average, range, variation } \}
```

• features are inconclusive

```
tears = (fears | sorrow | angry | happiness | dry eye)
```

features for ASR vs. features for ER

- ASR: spectral, short-time analysis
- ER: prosodic, long-time analysis

Recognition Models: ASR

generative models of speech

- acoustic model, e.g. hidden Markov models (HMMs)
- language model, e.g. n-grams

parameter estimation

expectation-maximization, count smoothing, parameter-tying . . .

search

$$\mathbf{W}^* = \arg \max_{\mathbf{W}} \ p(\mathbf{W}|\mathbf{O}) = \arg \max_{\mathbf{W}} \ p(\mathbf{W}) \ p(\mathbf{O}|\mathbf{W}).$$

- A* decoding
- dynamic programming + beam pruning

Recognition Models: ER

criteria

- plausibility
- feasibility
- scalability
- performance

framework

- deep vs. shallow
- cognitive vs. responsive
- general vs. limited domain
- multi-model and fusion

Future Works

- impacts
- application
- discussion
- conclusion

Impacts

impacts of emotion recognition

- on ASR
 - \rightarrow E.S.R.
- on spoken dialogue systems
 - \rightarrow interaction styles
- on voice search
 - → negative/positive links
- on "orange technology"
 - ightarrow barometer of personal emotion, slow-down of aging
- on education
 - → affective computing for effective learning

Killer Applications

just some thoughts

- kids' talk
 - \rightarrow the conjecture is that kids are emotionally "pure" or "primitive"
- motherese
 - ightarrow the conjecture is that motherese is consistent, at least from the baby's perspective
- e-Barometer
 - \rightarrow for people who are emotional
- entertainment industry (movie, TV, music . . .)
 - \rightarrow enormous and tremendous data
- You name it!

Discussion

- Different people express emotions differently, depending on age, culture, gender, and personality.
- Emotion is not yet an accurate science. It is more of an engineering problem (application-oriented, as long as it works), rather than a discovery in science.
- There is not a single definition of emotion that works well for every application.

Conclusion

- e for emotion.
- Emotions are important. We rely on emotions.
- Using machines for emotions are uncharted seas.
- With lots of data, we can apply machine learning approaches to emotion recognition.
- The front of spoken language technology may be changing tack and moving towards emotion recognition.
- Emotion recognition impacts other areas of spoken language technology.
- Emotionally speaking, I hope you find emotions interesting.
 That's the most important thing of all.